
Resource and Execution Control for Mobile
Offloadee Devices

Torsten Zimmermann, Hanno Wirtz, Jan Henrik Ziegeldorf, Christian Steinhaus, Klaus Wehrle
Chair of Communication and Distributed Systems, RWTH Aachen University
{zimmermann, wirtz, ziegeldorf, steinhaus, wehrle}@comsys.rwth-aachen.de

©2017 IEEE. This is the author’s version of the work. It is posted here by permission of IEEE. Not for redistribution. Cite as: T. Zimmermann, H. Wirtz, J.
Ziegeldorf, C. Steinhaus, K. Wehrle: ’Resource and Execution Control for Mobile Offloadee Devices’, IEEE SECON 2017. DOI: 10.1109/SAHCN.2017.7964939

Abstract—Mobile offloading overcomes the resource limitations
of offloader devices by splitting resource-intensive tasks and
allocating subtasks to nearby offloadee devices. In processing its
subtask, each offloadee effectively executes foreign and untrusted
code which might both harm the device and exhaust its resources.
Given the personal nature and constrained resources of offloadee
devices, such as smartphones, precise control at the offloadee
over the execution environment of offloaded tasks as well as the
provided and consumed resources then is a natural requirement
for the success of offloading approaches.

We thus contribute a mechanism for fine-grained resource
control of local task execution, benefitting allocation approaches
by precisely assessing, advertising, and guaranteeing offloadee
processing resources. Our design protects local device integrity
and usability by isolating the execution of each task in a dedicated
Linux container with precisely defined resource constraints. We
highlight the performance and immediate applicability of our
design through a prototypical implementation using LXC con-
tainers on COTS Android smartphones that achieves controllable
task execution at minimal costs: Each container starts up in only
2 ms, imposes less than 5 % computation overhead, and consumes
only 10 MB of memory.

I. INTRODUCTION

Mobile offloading harnesses the resources of nearby offloadee
devices to overcome the resource limitations of offloader
devices in the face of complex mobile applications, such as
games, speech and image processing, and mobile computer
vision [1], [2]. Existing offloading approaches [3]–[6] propose
offloader-side mechanisms to manage and split computation
tasks, discover nearby devices and their resources, as well as to
allocate tasks to suitable devices. As a result, an offloadee that
participates in mobile offloading is required to offer resources to
as well as process said tasks, i.e., execute untrusted code from
foreign devices. A natural requirement for the participation as
an offloadee is then the ability to control this execution and to
protect both the device and its resources.

However, offloadee devices are currently unable a) to assess
whether the execution of a task may cause harm to the device
and its data, and b) to precisely define and subsequently control
the resources offered to and consumed by the execution of the
task. This is because existing approaches [3], [5], [6] entirely
abstract from execution at the offloadee, i.e., do not propose
(or assume) any execution mechanism that would cater to
offloadee device protection. Furthermore, existing approaches
adopt a simplistic view of the resource availability at offloadees
by one-time benchmarking of the general device capabilities.
In this, they do not account the dynamics of local resource

usage and availability as well as the actual preferences of the
device owner with regard to the resources she wants to offer
to offloaded tasks. We argue that, without a mechanism that
accounts for the value and scarcity of offloadee devices as well
as their owners, adoption of offloading approaches will fail,
negating its proven benefits.

In this paper, we thus propose Resource and Execution
Control for Mobile Offloadee Devices (RECMOD), a counterpart
mechanism to existing offloader-side scheduling that realizes
the requirements of offloadee device owners for participation
in offloading approaches. Our prototypical implementation for
Android devices builds on Linux Containers (LXC) and a set
of adapted management tools. Thereby, RECMOD provides a
feature-rich yet lightweight execution environment for offloaded
tasks. In contrast to current approaches our design benefits
offloading approaches by the following three main features:
Isolation of Execution: RECMOD executes each task within a
dedicated container that strictly isolates it from the offloadee
operating system and other offloaded tasks. Untrusted code is
thus separated from the personal data of the device owner and
is limited to processing without unforeseen side effects.
Fine-Grained Resource Control: We enable fine-grained
resource allocation and control for each container, affording
complete control over both the number of as well as the
resources dedicated to (parallel) task execution. RECMOD
further accounts for the dynamic availability of resources at
mobile devices, e.g., in battery saving modes, and adapts both
the advertising of resources towards the offloading framework
as well as the allocation of local resources to containers. Our
design thus supports the precise definition and subsequent
guarantee of resource availability to the offloading framework,
thereby enabling successful task allocation and performance
of the overall offloading design.
Accounting for User Requirements: We introduce a practical
offloadee-side approach that accounts for user requirements
and control with regard to the execution of untrusted code and
the instrumentation of valuable resources of a personal device.

Our design directly embeds itself into and benefits current
mobile offloading approaches (Section II) by enabling the
precise assessment of and the control over the computation,
memory, and communication resources allocated to task
execution (Section III). Crucially, using RECMOD, device
owners are able to account for the respective capabilities
of their devices and, in turn, control their contribution to

https://doi.org/10.1109/SAHCN.2017.7964939


resource provision in offloading approaches. We implement
the container-based execution environment of RECMOD by
adapting and extending LXC for Android devices (Section IV)
and evaluate the performance, flexibility, and usability of
our design along multiple proposed offloading applications
(Section V). RECMOD provides a comprehensive offloadee
solution that accommodates offloader, offloadee, and user
requirements and at the same time contributes to the functioning
of the respective offloading approaches (Section VI).

II. RELATED WORK

RECMOD provides a comprehensive mechanism for fine-
grained resource control and isolation of computation in
mobile offloading scenarios. In the following, we discuss
existing approaches for mobile computation offloading and how
RECMOD complements those. We then present a representative
set of approaches that offload tasks to the cloud and discuss
the differences and challenges between cloud and mobile
computation offloading. Finally, we discuss existing approaches
for isolation of task execution that, similar to RECMOD, utilize
dedicated execution environments.
Mobile Computation Offloading: Offloading tasks among
mobile devices strives to utilize nearby resources while reducing
dependencies on infrastructure cloud environments and Internet
connectivity [7]. Building on local, opportunistic contacts
between resource-constrained devices, the challenges of mobile
offloading revolve around the complexity management of
partial tasks as well as their scheduling and distribution to
adequate nearby devices. Representative for a multitude of
approaches [3]–[6], the Serendipity framework [3] addresses
these challenges by proposing different distribution algorithms
as well as by allocating and disseminating tasks with a defined
complexity only to devices that offer matching computational
resources. Although authors of existing approaches unequivo-
cally point out the need for user based control over the offered
resources [5], they leave it to future work to provide actual
guarantees for the announced resources.

RECMOD complements related mobile offloading frameworks
by contributing the device-local part of mobile offloading,
i.e., a mechanism for fine-grained resource control and task
isolation. Specifically, RECMOD enables device owners to
precisely control and report to other offloading frameworks
the guaranteed resources offered to offloaded tasks, enabling
an informed allocation of tasks. At the same time, RECMOD
isolates computations and thus greatly reduces risks for owners
of offloadee devices.
Cloud-based Computation Offloading: Originating from the
work on Cyber Foraging [8], offloading of computationally
expensive tasks to more powerful computation surrogates or the
cloud promises the augmentation of constrained mobile device
resources. Thereby, it enables the execution of complex, time-
critical, and resource-demanding tasks [9]–[12]. Independent of
the actual realization, cloud-based offloading revolves around
the identification of suitable code parts that amortize the
communication overhead required to offload to the cloud by
the time and computation overhead saved. In this context,

these works focus on the seamless migration of applications
to the cloud [9], [11], as well as optimizing the elasticity and
scalability of computation offloading [12].

Compared to mobile offloading, cloud-based offloading
greatly differs in the individual communication models, i.e.,
external vs. local device-to-device, as well as in the availability
and scalability of resources. Whereas cloud infrastructures scale
easily, resources in mobile computation offloading are clearly
limited and constrained by the number of available devices and
their capabilities. RECMOD accounts for the challenges and
characteristics of mobile scenarios and, in contrast to cloud-
based solutions, especially for the inherent resource constraints
of offloadee devices.
Dedicated Execution Environments: Regardless whether
computation is offloaded to the cloud or to mobile devices,
the type of execution plays an important role with regard to
control and isolation of the task. In the aforementioned cloud
computing scenarios, this is typically achieved via system-
virtualization, utilizing Virtual Machines (VM). They either
mimic the source system, i.e., Android [11], [12], or use code-
portability across platforms, e.g., .NET Common Language
Runtime [9], to execute code. A different approach is to
provide the input for a computationally intensive task instead
of the code, e.g., transfer an image or recorded sound file for
further processing. Similar to cloud-computing, approaches for
mobile computation offloading [13] also utilize code portability.
Approaches like [3], [5], [6] built upon applications for the
respective platform, e.g., Android, but without resource control.
In this case, the underlying concept of process-level VMs, e.g.,
Dalvik or its replacement ART, already provides isolation, as
each application is executed on behalf of a separate user inside
a single instance of these VMs. As an alternative, the use
of virtualization techniques such as processor emulation [14]
or hypervisors for mobile platforms [15], [16] have been
introduced. The latter use system-level virtualization to isolate
tasks from each other, at the cost of running a full guest OS for
each task. Lightweight virtualization architectures such as [17]
built upon Linux namespaces to provide isolation between
multiple Virtual Phone instances on a single mobile device,
e.g., to distinguish between a business and private phone.

From our discussion of related work, we conclude that
current approaches lack the practical support for user-defined
resource control and isolation of tasks which limits their
adoptability in real-life scenarios. In the following section,
we derive certain challenges and requirements based on our
analysis of related work, present our design and the core
components, and how these complement current approaches.

III. DESIGN

RECMOD offers flexible, isolated, and resource-controlled
execution of tasks on offloadee devices that participate in
mobile-to-mobile computation offloading. Thus, it provides
the missing piece to proposed offloading frameworks [3], [5],
[6] that focus on offloader-side discovery, scheduling, and
allocation mechanisms. Figure 1 illustrates the high level design
of RECMOD and how it complements and augments existing



!"#$%&#'(

)*'(

+",&-&'*

./"%0'(12'3&-' ./"%0''12'3&-'

!"4451612&*-"3'(7

8"9

:-;'0<,'(

=%*>1612'3&-'

+("?,'*

!"4451612&*-"3'(7

8"9

:-;'0<,'(

=%*>1612'3&-'

+("?,'*

@A!B.21!"#$(",,'(

@'*"<(-'

C,,"-%D"#1

61!"#$(",

!"#$%&#'(!"#$%&#'(

Fig. 1. Augmenting and interfacing mobile offloading frameworks, e.g., [3],
[5], [6] (light colored), with RECMOD (dark colored). To offload a task,
an offloader decides to request computation resources on nearby devices
(Job Scheduler & Discovery) based on assessed task profiles (Task &
Device Profiles). A potential offloadee replies with a resource offer based on
configuration (User Policies) and current capabilities (Resource Allocation &
Device Profiles). Subsequently, the task is transferred to the offloadee (Job
Scheduler & Comm.) and is executed in an isolated execution environment,
i.e., a container, configured and controlled as announced (Resource Control).

frameworks. We shortly outline how RECMOD interfaces with
mobile offloading frameworks and detail each component in
the respective sections.

Consider the following scenario: a mobile device, i.e., the
offloader, initiates a resource intensive task. The Job Scheduler
requests information about previous executions of the requested
task and current computation capabilities (Task & Device
Profiles). Having ascertained that local resources are insufficient
to carry out the given task, the Job Scheduler decides to request
resources at devices in the vicinity (Comm. & Discovery). On
a mobile device that intercepts the request, i.e., the offloadee,
the Job Reception i) checks if it is eligible and ii) what amount
of resources can be offered for task execution (User Policies).
If the current settings allow to accept a task, it replies to the
request by announcing the resources. In case the announced
resources match the task requirements, the offloader issues
subparts of the task to the offloadee. Subsequently, RECMOD
allocates the resources on the offloadee (Resource Allocation)
starts the execution in an isolated execution environment, and
monitors and controls the resource usage (Resource Control).

Based on the aforementioned exemplary scenario, participat-
ing as an offloadee thus raises four distinct challenges for a
mobile device, which have been neglected in current approaches.
First, in order to enable successful task allocation, an offloadee
must precisely advertise and subsequently guarantee available
resources towards the offloader, in spite of the naturally fluctu-
ating resource utilization incurred by normal device usage. To
this end, we enable the offloadee to set and control the limits for
the resources, i.e., computation, memory, and communication,
she wants to offer (Section III-A). Second, offering resources
for offloaded tasks, as well as their subsequent execution, must
not impede normal device usage and must thus be controllable
by the device owner. Therefore, we allow the user to define
descriptive policies (Section III-B). Third, execution of an

essentially foreign, untrusted, and unchecked piece of code
naturally requires protection of the personal device. We achieve
this through the isolation of task execution in a dedicated
container execution environment (Section III-C). Last, the
active state of an offloadee device might change with regard
to the resources made available, e.g., in battery-saving states
or when restricting communication according to costs or data
plans. In order to enforce the user-defined policies in these
cases, our design adapts resource control to these varying
device states (Section III-D).

We cumulatively address the aforementioned challenges by
encapsulating each task in a LXC container instantiated on
the offloadee. We thereby improve on existing mechanisms for
offloadee-side execution in two aspects. First, current offloading
frameworks [3], [5], [6] envision offloadee-side execution in
running Android apps and thus do not afford direct control over
the resources allocated to and consumed by each task. Second,
while virtualization techniques for mobile devices [15], [16]
offer full control and isolation, instantiating an entire OS per
task introduces prohibitive storage, memory, and computation
overhead [17]. In contrast, our design strives for a lightweight
solution that combines the performance of native execution with
the isolation and control functionality afforded by virtualization
approaches, motivating our selection of Linux containers as
the task execution environment in RECMOD. In the following,
we illustrate the details as well as the benefits of this design.

A. Resource Allocation and Control

At its core, RECMOD enables users to precisely control
the resources offered to the execution of offloaded tasks. To
this end, it provides, for each accepted task, a dedicated
container and allocates a defined set of resources to it and
thus the execution of a task within it. In the following, we
thus refer to resources allocated to a task and to its container
interchangeably.

Intuitively, the resources offered by a device and consumed
by a task are computation, memory, and communication. We
make no assumption about the prevailing resources that might
be requested in offloading scenarios due to the diverse nature
of tasks that benefit from offloading. For example, speech
and face recognition are computation-bound tasks and thus
predominantly require CPU resources at offloadees [3]. In
contrast, tasks that convert speech to text, or vice versa,
require substantial communication resources as well as dynamic
memory on the offloadee device. We thus treat each resource, as
well as possible combinations, equally and separately. RECMOD
then enables the instantiation of execution environments with
a given set of resources, as well as the dynamic adaptation of
those to current device states based on resource control. We
summarize the resources that can be allocated and controlled by
RECMOD in Table I. In the following, we detail the challenges
of providing each resource in mobile to mobile computation
offloading and how we tackle this within RECMOD.
Computation: Modern mobile devices are equipped with multi-
core CPUs, e.g., quad- or even octa-core. Additionally, mobile
devices typically are able to control and regulate their CPU



Resource Control offered by RECMOD

Computation · accessible # CPU cores
· fixed lower and upper limit of CPU share

Memory · upper limit

Communication · type of interface (Wi-Fi, Cellular)
· traffic limit for up- & download
· bandwidth throttling for up- & download

TABLE I
OVERVIEW OF RESOURCES THAT CAN BE ALLOCATED BY RECMOD, AS

WELL AS RESPECTIVE CONTROL MECHANISMS.

through frequency scaling or even powering off single cores
to save battery when computation power is not needed or if
the battery level falls below a certain threshold. Exemplary,
a Nexus 5 running stock Android 5.1.1 powers off three of
the four available cores and sets the frequency to the lowest
level when the screen is locked and no high priority task is
running. Depending on the manufacturer, these settings are
either controlled by the OS kernel itself or a system service.

However, to gain full control over the assignment of compu-
tation resources, we enable RECMOD to override and control
CPU settings based on user policies, which we discuss in
Section III-B. RECMOD is enabled to assign a single or multiple
of the available cores to the offloaded task. Additionally, we
also allow to set lower and upper limits for the CPU usage, i.e.,
the time share on each available core. In this, the lower limit
guarantees a minimum of service to the offloader device and
the upper limit protects the offloadee device from unbounded
or monopolizing resource consumption by the task. Once a
task has been accepted for execution, we do not permit to
decrease the lower limit or to scale down the CPU frequency
as this would violate the guarantees made to the offloader.

Memory: The memory assigned to the offloaded task is
a second crucial resource, due to the transient and result-
oriented nature of tasks offloaded between mobile devices
which favors in-memory data and processing over persistent
long-term storage. In RECMOD, we decide to set the available
memory for the task to a fixed level that may be increased
based on user preferences but never be decreased. This allows
providing worst-case guarantees that enable more precise job
scheduling decisions by the offloader.

Controlling the memory in a dynamic fashion, i.e., allowing
it to grow and shrink adaptively, is infeasible with regard to
our scenario for various reasons. First, when memory has been
decreased for a running task, we cannot assure to have enough
memory available to just increase on demand, as the user or
applications might interact with the offloadee device. We stress
that the top priority is to not disturb and harm the normal usage
of the mobile device. Second, even if there is no interaction
or concurring application, we envision to allow the offloadee
device to accept multiple tasks in parallel. Therefore, a fixed
and guaranteed upper limit thus enables the management of
multiple tasks and allows to keep a certain amount of memory
free to accommodate user applications and tasks not directly
controlled by RECMOD.

Communication: Some tasks might require communication
for local exchange of commands, intermediate results with the
offloader, or to retrieve external service data located in the
Internet. Making the respective communication interfaces of
the offloadee, i.e., Wi-Fi or 4G, available to the task execution
incurs different types of costs for the offloadee. First, all of the
aforementioned communication interfaces consume different
amounts of energy. Moreover, offloaded tasks may interfere
with other applications’ traffic and thus harm the overall user
experience. Lastly, allowing use of the cellular interface will
introduce either monetary costs or limit the data plan traffic
left for the user.

While we are able to guarantee exact computation re-
sources and available memory, guaranteeing certain amounts
of bandwidth is infeasible since we are not in control of
the communication infrastructure. Instead, depending on the
setting (cf. Sec. III-B), we allow environments to access these
communication interfaces, to specify a traffic limit in both
directions, and to throttle bandwidth in the upload direction.
In addition, we allow to set what kind of interface and what
kind of traffic, e.g., local or external, is allowed.

In the following, we illustrate how we allow device users
to control the resources and which settings are feasible in the
scenario of mobile computation offloading.

B. User Preferences & Task Control

RECMOD enables users to share their available device
resources in mobile offloading scenarios in a controlled manner.
As the basis for such sharing, we envision users to a priori
define the overall resources they want to make available to
offloaded tasks, in view of their normal device usage and their
sharing preferences. The resulting resource pool (cf. Tab. I) is
then made available to the embedding offloading framework
by RECMOD, which then can be assigned to individual tasks
as requested by an offloader. Moreover, user configurations can
be bound to constraints such as a certain battery level, thus
disabling to advertise the availability of multiple cores or not
allowing communication. For communication traffic limitation,
the allowed traffic can be coupled to the amount of traffic
left in the user’s monthly data plan, if we consider a cellular
connection. As these settings can be applied dynamically and
constraints only need to be evaluated when a nearby offloading
device requests resources, this only adds marginal management
overhead to the overall offloading framework.

An important aspect is how RECMOD handles situations
where tasks are reaching the limits of the provided resources.
Ultimately, this decision is up to the embedding offloading
framework and the implemented Job Scheduler/Reception (cf.
Fig. 1), as the task execution planning is not part of RECMOD.
In the following, we sketch how RECMOD supports the control
of tasks. Independent of the resource, the Resource Control
component can signal the task and inform about the approach-
ing limit, such that direct countermeasures could be taken by the
task, depending on the resource and implementation of the task.
If the task is reaching the provided limit for communication,
i.e., amount of traffic in either direction, computation is still



possible. However, if the task is computing at its resource
limits for a certain amount of time, we propose the following
solution. As RECMOD is monitoring the usage of the provided
resources, it will recognize the aforementioned behavior. When
the current device state and user policy permits, RECMOD can
increase the already provided resources. This solution does not
require any changes to the task itself, e.g., including an API to
request more resources. When no more resources are available
or an increase is not allowed, it depends on the implemented
Job Scheduler, if the execution should be paused or stopped.

C. Isolation of Tasks

In mobile offloading scenarios, users share their resources
with others and accept to execute foreign code on their devices.
This bears the risk of executing code that is malicious or
harmful to the offloadee device, e.g., via non-authorized access
to private user data. Without adequate countermeasures, this
prevents any user acceptance and the real world applicability
of mobile offloading schemes. Thus, RECMOD isolates the task
in a dedicated container (cf. Fig. 1) to delimit its execution
effects and protect offloadees. In the following, we present
what is protected by use of containers in RECMOD.

First and foremost, erroneous code or inputs that may cause
a crash of the application must not cause a crash of the device
operating system. Moreover, an offloaded task should not be
able to access resources that have not specifically been provided
for the task itself. Besides the resources RECMOD allocates
and assigns to the container itself, such resources also include
data or memory of other applications. In RECMOD, the isolated
task has no notion about tasks and processes outside of its
container and thus is only able to control and monitor processes
triggered by the task for its execution. This also includes access
to personal data or devices, e.g., phone contacts, pictures,
messages or the usage of the camera or microphone.

From the perspective of the offloadee device, the execution
of the task itself in the container is fully controllable in
terms of starting and stopping their execution as well as the
allocation of resources. To accommodate tasks in a flexible
way, we do not limit the execution of tasks in RECMOD to a
specific type of implementation, e.g., self-contained binaries
or scripts. Thus, we offer basic functionality for a variety of
task implementations that can be extended according to future
needs. We refer to Section IV for the actual implementation
and management of containers in RECMOD.

D. Accounting for Varying Resources

Once an offloader has requested resources for computation,
potential offloadees in the vicinity may advertise their current
computation capabilities. In this regard, RECMOD utilizes
its possibility to control resources and thereby the ability
to advertise a guaranteed set of resources, either based on
specific profiles or on user policies (cf. Sec. III-B). However,
these capabilities are dynamic and may vary. In the following,
we illustrate how to handle variations in a RECMOD-enabled
offloading framework using multiple device profiles.

As briefly discussed in Section III-A, computational re-
sources on mobile devices do not stay stable per se. For
example, a certain battery level or device state might cause
the mobile device to lower the CPU frequency or to even
shut down cores. Moreover, applications running in parallel,
user interaction, and multiple parallel containers also impact
the availability of resources for offloaded tasks. In addition,
user-defined policies (cf. Sec. III-B) add further possibilities,
such as to not offer communication resources below a certain
battery level or to limit traffic via the cellular interface.

Because similar user-defined policies are also imaginable
for CPU settings or memory, the overall amount of possible
resource settings is increased even further. Therefore, adver-
tisements of resources need to be updated on a regular basis.
To cope with this variety of device states the profiling step
of previous approaches [3], [9], [11] is extended. We propose
to profile tasks with respect to available device states and
user-defined policies. To this end, device profiling includes
executing pre-defined benchmarks or exemplary tasks with
varying input on a set of individually configured execution
environments as part of a boot strapping process. In a real
world setting, generating new device profiles as soon as new
user-defined preferences are provided is not feasible, due to
the aforementioned possibly huge amount of policies. As a
practical solution, when announcing resources during discovery,
the offloadee should announce the available resources according
to the user policy but include the best matching device profile
based on the previously described process.

The resulting profiles in combination with the ability to
allocate resources (cf. Sec. III-A) allow existing schedulers
(e.g., [3]) to even distribute tasks with certain level of time
constraints, as RECMOD guarantees the availability of the
announced resources.

IV. IMPLEMENTATION

In the following, we describe and discuss our prototypical
implementation of RECMOD. In recent years, operating-system
level virtualization based on containers such as LXC1 or
Docker2 emerged and have established themselves as valuable
alternatives to full system virtualization approaches. The
concept of containers is enabled by features of the Kernel,
i.e., cgroups and namespaces. The former allows the limitation,
accounting, and isolation of resources for a set of processes, and
the latter provides an abstraction of global system resources,
e.g., providing a fresh set of unique process IDs per namespace.
This kind of virtualization allows to realize an application
or system container, both using the underlying host kernel,
which renders them leaner and smaller than the aforemen-
tioned hypervisor-based virtualization approach, and showing
performance similar to native execution of the task [18]–[20].

We base our prototypical implementation of RECMOD
on LXC. Our prototype is realized on an LG Nexus 5
(hammerhead) smartphone running a rooted Android 5.1.1,

1https://linuxcontainers.org/
2https://www.docker.com/

https://linuxcontainers.org/
https://www.docker.com/


with a Kernel 3.4. Inside the container, we use Debian 8
(jessie), that uses the underlying host Kernel, to provide a
rich and extensible execution environment, e.g., including
well established libraries and script interpreters. Container
structures in current Kernel versions already support a full-
fledged execution environment that offers isolation of processes
and basic resource control, rendering them a perfect match
for the requirements of offloadee task execution as outlined
in the previous sections. Moreover, more recent versions
promise additional features that further enhance the capabilities
of encapsulating tasks within container structures, such as
mapping the root user in the container to a less privileged user
outside the container. In terms of protection, e.g., compared
to system-virtualization techniques such as [15], [16], there
is a trade-off in using LXC containers. Because the Kernel is
shared between the container and the host, it does not protect
against exploits of kernel bugs. While system-virtualization
techniques solve this, though instead exploitation of hypervisor
bugs might be possible, the requirements for a lightweight
approach led us to choosing LXC over VMs. This can also be
mitigated with support offered by more recent Kernel versions.

Next, we outline how the resources offered by an offloadee
are controlled in our prototypical setup. In the container itself,
we create a computing user with limited permissions, that we
map to a user added to the Android host system. A major
benefit is that we can monitor and control the traffic using
iptables and tc based on the respective User ID (UID) outside
the container. For monitoring of other resources, we add a set
of scripts that control the LXC tools according to provided
resource control and user policies. Management for the CPU
based resources, i.e., computation time and number of cores, is
completely manageable via LXC, i.e., the assigned resources
are guaranteed. In case of memory, slightly more adaptations
are necessary. Although LXC allows to set an upper limit,
this is not guaranteed to be available as memory cannot be
blocked for the container. To this end, we allow RECMOD to
override the internal Android memory management settings,
i.e., the Low Memory Killer (LMK). The task of the LMK is
to kill processes based on defined priority values and minimum
free memory settings. Changing both (dynamically), allows us
to keep some memory free based on user-based preferences
serving as headroom for containers and to prevent the LMK
from interfering with the container’s memory.

V. EVALUATION

In this section, we first evaluate the overhead introduced by
RECMOD’s LXC based execution environment, using exemplary
tasks such as face detection and speech-to-text, inspired by [3].
Second, we illustrate the resource control between containers
themselves and between containers and user applications.
Finally, we evaluate the scalability of the proposed approach
using an exemplary task and multiple containers in parallel
and discuss resource limitations.

As RECMOD provides resource control and a general
execution environment for existing offloading and scheduling
approaches (cf. Sec. III), we focus our evaluation on the

native @0.7GHz LXC @0.7GHz native @1.5GHz LXC @1.5GHz

bc
π (1000)

bc
π (2000)

face-detect
Python

speech-text
C

speech-text
Python

Type of Task

100

101

102

T
im

e
[s
]

Fig. 2. Comparison of computation times of exemplary tasks being executed
natively or in a chroot environment (in the case of Python implementations)
and inside a container at different frequencies. Shown are the means and the
(hardly discernible) 99 % confidence intervals.

aforementioned aspects on the offloadee device. If not stated
otherwise, we conducted 30 independent runs of each evaluation
and show the mean and the 99 % confidence interval.

A. Overhead

As discussed, an execution environment in the realm of
mobile task offloading should add as little overhead as possible.
We evaluate the impact of RECMOD’s container based solution
on task completion as well as memory requirements and
show that our prototypical implementation only adds marginal
overhead to the overall task itself. Moreover, we analyze the
delay for starting a task in a dedicated container and find that we
can provide a configured container and subsequently start a task
within a few milliseconds. During our overhead and scalability
evaluation, we began by setting the CPU frequency to the
highest available level, 2.2 GHz. However, due to excessive
subsequent tests, the device overheated and the CPU frequency
was automatically reduced to protect the hardware. Thus, we
limit the CPU frequency to a maximum of 1.1 GHz if not
stated otherwise, based on empirical test, in order to obtain
stable results even in multiple successive evaluation runs. If
not stated otherwise, the smartphone is not executing other
applications than RECMOD and the task(s) in control.
CPU and Memory Overhead: To evaluate the impact of the
container based approach of RECMOD on the computation, we
implement several tasks and compare overheads for running
them natively on the device and in the container. The goal
of this evaluation is twofold. First, we want to analyze the
impact of RECMOD to the mobile device itself, as the overall
capability of the offloadee and the usefulness as an offloading
target should not be diminished. Second, we want to gain an
comprehensive understanding of actual resource requirements
of the aforementioned tasks and their applicability on mobile
devices. Inspired by the evaluation in [3], we implemented
exemplary face detection and speech-to-text tasks. The former is
a Python implementation based on OpenCV. For the latter task,
we use two implementations, one in Python and a second in C
which are both based on PocketSphinx. Moreover, we compiled
the GNU bc tool and calculate different amounts of decimal
places of π. To run the Python-based implementations outside
a container, we chroot in the respective rootfs. We repeat
these settings with the CPU speed set to 0.7 GHz and 1.5 GHz.



boot idle face-detect
python

speech-text
python

speech-text
C

Container and Task Setups

0

40

80

120

160
M
em

or
y
[M

B
]

Fig. 3. Memory usage of a container running a Debian 8 in various setups.
During boot, the memory usage is around 15 MB and 10 MB when idling.
Running various tasks in the container increases memory to a range of
81.25 MB up to 142.45 MB.

Figure 2 shows the mean with 99 % confidence interval of the
run times of the aforementioned tasks over 30 independent
runs. Executing the bc tool natively is slightly faster (below
1 %) than in the container for both CPU frequency settings.
Performing the face-detection task on a picture with a resolution
of 2560× 1536 finishes after 4.94 s when executed natively and
after 4.91 s in the container at 1.5 GHz (10.95 s and 10.96 s for
the lower CPU speed). Running the C-based speech-to-text task
nativley at 1.5 GHz and 0.7 GHz on a 30 s wav file takes 51.37 s
and 102.52 s, respectively. The Python-based implementation
runs natively in 55.93 s and 119.52 s. In the container, the
C-based task takes on average 53.67 s and 102.45 s, while
the Python-based implementation runs in 56.64 s and 116.11 s.
Summarizing, the experienced computation overhead, if any,
is at most 5 % in all of the evaluated tasks.

To quantify the memory overhead, we monitor the memory
usage of a container during boot, while idling, and while
executing several exemplary tasks. The maximum memory
usage is acquired by the Kernel’s cgroup interface. Booting a
container running Debian 8 on top of the host Kernel yields
an maximum memory usage of 14.28 MB, which decreases to
9.89 MB after the boot process (cf. Fig. 3). Again, we stress
that we do not decrease the assigned memory to a container
once it is running. Thus, the minimal amount of memory that
has to be allocated by RECMOD has to fit the requirements of a
container during boot. For the exemplary tasks, the maximum
amount of memory consumed is in the range of 81.25 MB up
to 142.45 MB. Please note that the memory required by bc and
a container is around 11.6 MB and therefore covered by the
allocation needed for a container to start.
Time Overhead: Next, we evaluate the delay until a task can
be started after is has been received by the offloadee, i.e.,
instantiating and starting a container, and finally executing
the task after the boot process. If this time exceeds a certain
limit, the benefit for the offloader might be limited or even
lost, depending on the overall execution time it would take to
run the task locally. On average, this takes 2.68 s on the Nexus
5 (cf. boot in Fig. 4). Depending on the task, referring back to
Figure 2, this might add substantial overhead compared to the
execution time, e.g., 55 % in the face-detection use case. To
further reduce this time, we utilize techniques offered by LXC
and instantiate and completely boot a container without further
configuration and subsequently freeze it. Thus, it will only
consume a marginal amount of memory (9.89 MB, cf. Fig. 3),

10−4 10−3 10−2 10−1 100 101

Time until Task Start [s]

bo
ot

un
fr
ee
ze

ap
p

co
nt
.

C
o
n
ta
in
er

S
et
u
p

Fig. 4. Time until a task can be executed. Starting a container running a
Debian 8 from scratch, i.e., booting and then starting the task, is denoted as
boot. Starting a task in an already established but freezed container is denoted
as unfreeze, and starting the task in an application-only container as app-cont.

but no processing is performed. Upon task reception by the
offloadee, the container is configured regarding the announced
resources, the task is handed over to the container, and finally
the container is unfreezed to start the execution. Using this
approach, the time to start a task is drastically reduced to 1.8 ms
(cf. unfreeze in Fig. 4). Depending on the configuration and
available resources on the device, i.e., the ability to execute
more than one container at a time, the aforementioned step can
be repeated and keep another paused container for an upcoming
task, with marginal overhead. Finally, LXC allows to start an
application in a container (app-cont.), without the need to boot
and start an additional system on top of the Kernel (Debian 8
in our case), which shows a similar time as to unfreeze a
container. However, in our prototypical implementation and
the lack of certain Kernel features (cf. Sec. IV), we use the
former approach for the complete evaluation.
Storage: In our prototypical implementation (cf. Sec. IV), we
run Debian 8 inside the container to realize a flexible execution
environment. The size of the base rootfs is 106 MB. In this
base configuration, the container is able to execute simple bash
scripts, i.e., using the bash-builtins. When adding functionality,
e.g., a Python interpreter or the essential build tools to compile
C/C++, this grows to 182 MB and 297 MB respectively. During
our use case evaluation, i.e., speech-to-text and face-detection
(Python based), the necessary storage increased to 431 MB
and 554 MB respectively. To keep the storage overhead at a
reasonable level, especially when allowing to run multiple
containers in parallel, one could use the same rootfs for
several container instances. Upon start, RECMOD then assigns a
different computation user to each container, thus providing an
individual home for each task. Note that this does not impact
the resource allocation and control.

B. Resource Control & User Policies

A core feature of RECMOD is the fine-grained control
over resources based on user policies. In the following,
we illustrate how exemplary policies affect the computation
between containers themselves and between user applications
and containers.

First, we consider a user policy that allows the offloading
framework to instantiate two containers for task execution. Both
are assigned to the same CPU core. However, one container
(C1) is assigned at least 75 % of the CPU core and the other
container (C2) is allowed to use at least 25 %, as long as both



0 50 100 150 200 250 300

(Individual) Execution Time [s]

C2

C1

U
se
r
P
o
li
cy

C
o
n
fi
g
u
ra
ti
o
n

Fig. 5. Two parallel containers on one CPU core executing 30 runs (altering
colors) of the face-detect task in an iterative manner. User policy for this
setting is as follows: as long as both containers (C1, C2) are running, C1 gets
75 % of the core as a guaranteed lower limit and the rest is assigned to C2.
As soon as C1 is finished, C2 is allowed to monopolize the complete core.

1 core
@1.1GHz

2 cores
@1.1GHz

4 cores
@1.1GHz

1 core
@1.5GHz

Assigned Ressources per Setting

0
5

10
15
20
25
30
35

C
o
m
p
le
te
d
T
a
sk
s

Fig. 6. Repetitive execution of four parallel instances of the face-detect
implementation in a single container. After 60 s, we count the total number of
finished tasks and vary the available computation resources, i.e., number of
cores and frequency, and repeat the previous step.

are executing tasks. To achieve faster task completion when
resources are available again, the user allows a single container
to use as much CPU shares as available on the core. To
illustrate the effect, we again use the face-detect implementation
and execute successive runs on the same input image in C1
and C2, which are controlled by RECMOD respecting the
aforementioned user policy. As depicted in Figure 5, in the
presence of two containers, the execution of individual tasks in
C1 is faster than in C2. On average, a task in C1 requires 6.67 s
to finish and 20.09 s (ratio of ≈ 3:1) in C2. As soon as C1
has stopped, C2 is able to finish the execution with an average
of 4.94 s for the remaining tasks as it is able to increase its
resource allocation based on the aforementioned user policy.

Next, we allow varying the available computation resources,
i.e., number of cores and frequency, assigned to a single
container that is executing multiple tasks in parallel. We
therefore assign a single CPU core, set to 1.1 GHz, to the
container and start four instances of the same task, i.e.,
repetitive face-detection on the same image, overall resulting
in 8 completed tasks in a time window of 60 s. Subsequently,
we repeat the run as before but assign a second core (16 tasks)
and four cores (32 tasks) respectively. Finally, we restrict the
container back to one core but increase the CPU frequency
to 1.5 GHz, allowing to complete 12 tasks in the given time
(cf. Figure 6). In a real-world setting, this variable control of
computation resources is feasible when the system has free
resources again or limit resources when user space applications
are started.

Policies that enforce the first example, i.e., increase on
demand, are also possible for communication and memory, as
discussed in Section III-B. In contrast, the second example

Container (C1,C2) App (Antutu Benchmark)

C1

only
App
only

C1, one core
App, three cores

C1, C2, each one core
App, two cores

Setting

0

2

4

6

8

10

T
im

e
[s
]

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
ed

B
en

ch
m
ar
k

Fig. 7. Running a user space app, in parallel to containers, that run the
face-detect task. First, both run exclusively. Next, the number of cores for user
space apps is decreased and cores are assigned to containers. While benchmark
scores decrease (right axis), the task completion time of the container stays
stable. Variations are due to system processes on the respective core.

20MB 40MB 60MB 80MB no limit

Upper Memory Limit

0
5

10
15
20
25
30
35

T
im

e
[s
]

Fig. 8. Face-detect task completion time when swapping has to be performed
due to memory limits. To this end, we enable swap in the Kernel and run a
single container with different limitations.

only yields feasible policies for computational resources. This
is because memory can not be revoked, i.e., if extra memory
is assigned it might immediately be allocated by the task
and thus can not be reduced without interfering with the
tasks functioning. Therefore, we opt against the ability to
reduce it again, as this would require additional signalling and
management by the task itself.

In the following, we evaluate the effect of a running container
on user space applications, depicted in Figure 7. The user
space application is represented by Antutu Benchmark, that
comprises, among raw CPU and memory benchmarks, 3D
rendering representing games and user experience benchmarks.
As a baseline, we let the Antutu Benchmark run on four cores
set to 1.1 GHz, without anything else than the base system
running in parallel. Subsequently, we assign only three and two
cores to the user processes running on the smartphone. The
remaining cores are assigned to individual containers running
the face-detect implementation. We show the maximal achieved
normed score of the benchmark, which decrease by 8 % for
each core we remove from the resources assigned for user
space applications. The containers running face-detect stay
rather stable between 6.88 s and 7.21 s, due to the assigned
resources. Slight variations are due to the load of system
processes running on the respective cores.

C. Scalability

In our previous evaluation setups, we have showed that it is
possible to execute multiple containers (cf. Fig. 5) on a COTS
smartphone. Due to fine grained resource control offered by
RECMOD, we allow an offloadee device to accept more than



one task at a time to be executed in an individual container,
if resources permit. In our prototypical implementation, this
is mainly influenced by the overall available computation and
memory resources and usage by the underlying operating
system, i.e., Android, itself. To obtain a better understanding of
the scalability, we assume an idling smartphone with no user
interactions or applications interfering. Whereas the CPU is
only experiencing minimal load and therefore possibly scaled
down, slightly more than 50 % of the available 2 GB memory
of the smartphone is occupied by the operating system (cf.
Android Compatibility Definition Document [21]). Moreover,
the stock Android 5.1.1 Kernel 3.4 is configured without swap
support, making the remaining memory a hard limit. We were
able to start six containers in parallel, configured to run on
three cores, on an idling smartphone that run the face-detect
task, only constrained by the systems memory. Please note that
during our evaluations and depending on the density of the
tasks, i.e., multiple iterations at a certain frequency for minutes
without any pause, the smartphone began to heat up, which
lead to thermal events that forced the CPU to scale down.
Therefore we set the assigned CPU cores to a moderate level
that allows to run excessive tests without heating problems,
which is, based on empirical test, 1.1 GHz on the LG Nexus 5.

Of course, in a real world setup and depending on the
respective user-policy affecting the memory management (cf.
Sec. IV), accepting a relatively large number of memory
intensive jobs blocks the device for normal usage. To overcome
the memory limitation and to evaluate the effect of swapping to
the task completion time, we activate swapping in the Kernel
and provide a swap file of 1 GB. We again use the face-detect
task and start a container with different memory limits, such
that swapping has to be performed. The results are illustrated in
Figure 8. In the case of a 20 MB memory limit, the completion
time increases by a factor of ≈ 6 compared to the case of
unlimited memory.

VI. CONCLUSION

In this paper, we have presented RECMOD, an approach
that complements existing mobile computation offloading
frameworks by controlling, and in turn being able to guarantee,
the precise amounts of local resources available for offloaded
task processing. Based on such guarantees, an offloading
device is able to efficiently schedule and allocate tasks to
offloadee devices. In turn, an offloadee device, is able to
allocate controlled amounts of resources for offloaded tasks,
following the resource policies defined by the device owner.
Moreover, based on LXC, RECMOD provides an isolated
execution environment for the offloaded task.

Our prototypical implementation and evaluation on a COTS
Android smartphone based on Linux containers illustrates the
applicability on current mobile devices, adding only marginal
overhead in computation (< 5 %) to the execution of the
offloaded task itself compared to native performance. Moreover,
it allows for fine-grained resource control between multiple
offloaded tasks themselves as well as between tasks and user
space applications. Utilizing LXC, we are able to provide a

freezed container for an upcoming task, with marginal memory
requirements (< 10 MB) while paused, that is ready for task
execution within only 2 ms.

As possible extensions, we envision RECMOD to offer self-
learned policies that incorporate assessed current and past
device states to decide if computation should be offered, e.g.,
based on device states or user behavior [22]. Moreover, the
resource control and isolation of RECMOD is not limited to
the use in mobile device computation offloading, but can also
be utilized for easier realization and faster adoption of crowd
computing approaches such as [23], [24] or crowd-assisted
mobile measurements [25].

ACKNOWLEDGEMENTS

This work has been funded by the DFG as part of the CRC
1053 MAKI.

REFERENCES

[1] W. Hu et al., “The case for offload shaping,” in ACM HotMobile, 2015.
[2] P. Jain, J. Manweiler, and R. Roy Choudhury, “Low Bandwidth Offload

for Mobile AR,” in ACM CoNEXT, 2016.
[3] C. Shi et al., “Serendipity: Enabling Remote Computing Among

Intermittently Connected Mobile Devices,” in ACM MobiHoc, 2012.
[4] C. Shi et al., “Computing in Cirrus Clouds: The Challenge of Intermittent

Connectivity,” in ACM MCC, 2012.
[5] K. Habak et al., “Femto Clouds: Leveraging Mobile Devices to Provide

Cloud Service at the Edge,” in IEEE CLOUD, 2015.
[6] G. Calice et al., “Mobile-to-mobile opportunistic task splitting and

offloading,” in IEEE WiMob, 2015.
[7] D. G. Murray et al., “The Case for Crowd Computing,” in ACM

SIGCOMM MobiHeld, 2010.
[8] R. Balan et al., “The case for cyber foraging,” in ACM SIGOPS, 2002.
[9] E. Cuervo et al., “MAUI: Making Smartphones Last Longer with Code

Offload,” in ACM MobiSys, 2010.
[10] M. Satyanarayanan et al., “The Case for VM-Based Cloudlets in Mobile

Computing,” IEEE Pervasive Computing, 2009.
[11] B.-G. Chun et al., “CloneCloud: Elastic Execution Between Mobile

Device and Cloud,” in ACM EuroSys, 2011.
[12] S. Kosta et al., “ThinkAir: Dynamic resource allocation and parallel

execution in the cloud for mobile code offloading,” in IEEE INFOCOM,
2012.

[13] G. Huerta-Canepa and D. Lee, “A Virtual Cloud Computing Provider
for Mobile Devices,” in ACM MCS, 2010.

[14] M. Black and W. Edgar, “Exploring mobile devices as Grid resources:
Using an x86 virtual machine to run BOINC on an iPhone,” in IEEE/ACM
GRID, 2009.

[15] K. Barr et al., “The VMware Mobile Virtualization Platform: Is That a
Hypervisor in Your Pocket?” ACM SIGOPS Oper. Syst. Rev., 2010.

[16] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” in ACM ASPLOS, 2014.

[17] J. Andrus et al., “Cells: a virtual mobile smartphone architecture,” in
ACM SOSP, 2011.

[18] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in IEEE IC2E, 2015.

[19] A. Machen et al., “Migrating running applications across mobile edge
clouds,” in ACM MobiCom, 2016.

[20] W. Felter et al., “An updated performance comparison of virtual machines
and Linux containers,” in IEEE ISPASS, 2015.

[21] Android Open Source Project, “Android Compatibility Definition
Document,” [Online, accessed 12/12/2016] https://source.android.com/
compatibility/cdd.html.

[22] S. L. Jones et al., “Revisitation analysis of smartphone app use,” in ACM
UbiComp, 2015.

[23] J. Cappos et al., “Seattle: a platform for educational cloud computing,”
in ACM SIGCSE, 2009.

[24] M. Y. Arslan et al., “Computing while charging: Building a distributed
computing infrastructure using smartphones,” in ACM CoNEXT, 2012.

[25] A. Nikravesh et al., “Mobilyzer: An open platform for controllable
mobile network measurements,” in ACM MobiSys, 2015.

https://source.android.com/compatibility/cdd.html
https://source.android.com/compatibility/cdd.html

	Introduction
	Related Work
	Design
	Resource Allocation and Control
	User Preferences & Task Control
	Isolation of Tasks
	Accounting for Varying Resources

	Implementation
	Evaluation
	Overhead
	Resource Control & User Policies
	Scalability

	Conclusion
	References

