
SPLIT: Smart Protocol Loading for the IoT

Torsten Zimmermann†, Jens Hiller†, Jens Helge Reelfs, Pascal Hein, Klaus Wehrle
Chair of Communication and Distributed Systems, RWTH Aachen University

{zimmermann, hiller, reelfs, hein, wehrle}@comsys.rwth-aachen.de
†Equal Contribution

Abstract
The Internet of Things (IoT) permeates our everyday life,

e.g., in the area of health monitoring, wearables, industry,
and home automation. It comprises devices that provide only
limited resources, operate in challenging network conditions,
and are often battery-powered. To embed these devices into
the Internet, they are envisioned to operate standard protocols.
Yet, these protocols occupy the majority of limited program
memory resources. Thus, devices can neither add application
logic nor apply security updates or adopt optimizations for
efficiency. This problem will further exacerbate in the future
as the further ongoing permeation of smart devices in our
environment demands for more and more functionality.

To overcome limited functionality due to resource con-
straints, we show that not all functionality is required in paral-
lel, and thus can be SPLIT in a feasible manner. This enables
on-demand loading of functionality outsourced as (multiple)
modules to the significantly lesser constrained flash storage of
devices. We exemplify efficient modularization of DTLS and
show that SPLIT enables operation of large protocol stacks
while it incurs reasonable, tunable performance trade-offs.
Our use case specific results show an initial runtime overhead
of 23.34 % and 4.9 % for subsequent protocol executions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]:

Network Architecture and Design; C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms
Design, Security

Keywords
Internet of Things, Networking, Protocols, Modularization,

On-demand Loading, Sustainability

0 10 20 30 40 50 60 70 80 90 100

Size [KB]

RAM

ROM

M
em

or
y

Contiki (IPv6)

Sensor Lib.

Filesystem

CoAP

DTLS

AES

ECC

Figure 1. Memory requirements for a typical IoT stack.

1 Introduction
The ongoing permeation of smart devices in our envi-

ronment, e.g., health monitoring, wearables, industry or
home automation [1], provides the basis for the Internet of
Things (IoT). As more and more users experience the bene-
fits in these areas, the requirements regarding functionality
provided by IoT devices also increase. Further demands for
functionality emerge from the use of standard communication
protocols to connect to the existing Internet infrastructure.

However, IoT devices are challenged by resource con-
straints especially facing limited processing power and
tough memory boundaries, sparse energy provided by batter-
ies, and lossy low-power wireless communication environ-
ments [3, 10]. These constraints lead to new, trimmed stacks
with adapted protocols, e.g., 6LoWPAN [14]. Still, these
protocols occupy the majority of memory resources, limiting
capabilities for actual applications and further protocols.

Contrarily, we identify that functionality of many appli-
cations and protocols is separable into different phases, e.g.,
reading and processing a sensor value or connection setup
and exchange of data. This especially holds for IoT security
protocols such as DTLS [16], HIP DEX [15], and Minimal
IKE [11]. Although intended for the IoT, they still occupy a
non-negligible amount of memory (cf. Fig. 1 and analysis in
Sec. 2). In addition, their optimizations trade off efficiency
for higher memory usage [8, 10]. Consequently, memory for
actual applications is scarce and thus significantly limits func-
tionality, which is a crucial factor for envisioned IoT scenarios
(Sec. 2). Simply increasing available device resources raises
production costs and is thus undesirable, with regard to the
tremendous amount of devices [1] and sustainability. How-
ever, the complete functionality, e.g., connection setup and
exchange of data, is typically not required in parallel, which
leaves potential for more efficient memory handling. Instead
of keeping instructions for all functionality in program mem-
ory at all time, we propose to outsource functionality to the
large flash storage and only load it on demand. Tapping this
resource, we enable IoT devices to offer substantially more

49

International Conference on Embedded Wireless 
Systems and Networks (EWSN) 2018
14–16 February, Madrid, Spain
© 2018 Copyright is held by the authors. 
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-2-1



functionality. Existing approaches (Sec. 3) that exchange
functionality at runtime mainly focus on reconfigurability and
updatability after deployment [5, 17, 19]. Complementing
these approaches, we analyze effect, feasibility, and applica-
bility of on-demand loading for IoT stacks to efficiently use
memory. Specifically, our contributions are as follows:

• We present Smart Protocol Loading for the IoT (SPLIT),
a mechanism for on-demand loading of functionality
outsourced as (multiple) modules to the less constrained
flash storage of devices. Outsourced functionality only
employs resources when needed for execution (Sec. 4).

• We implement and evaluate SPLIT and highlight its ap-
plicability by employing the de-facto standard IoT secu-
rity protocol DTLS (Sec. 5).

2 Memory Constraints Limit Functionality
We first analyze required functionality in typical IoT envi-

ronments to highlight today’s problem of limited functionality
on memory-constrained devices: Typical tasks in the IoT in-
volve communication with multiple entities locally or via
the Internet. Humans may retrieve sensor readings or trigger
actions [20]. Additionally, data is obtained from Internet ser-
vices to make informed decisions. Finally, gathered data can
be transmitted to the cloud for further processing [7]. Thereby,
security and privacy of sensitive data, especially when sent
over the Internet, must be maintained [1,7,10]. To realize this
IoT vision, devices must cover a wide range of functionality
from secure communication protocols to processing logic for
sensor data, and interaction with the environment.

Still, they commonly must have low production costs, need
to be compact, and are often battery-powered to be mobile.
Thus, they are realized using specialized hardware at the price
of restricted performance and capabilities in regard to pro-
cessing and memory. Furthermore, to save power, they use
low-power, low-rate wireless interfaces. We thus call these
devices constrained [3]. Finally, they typically employ persis-
tent storage, with a capacity of up to several MB. Exemplary
devices are the Zolertia Z1 or the Wismote platform.

We illustrate the impact of the required functionality by an
example and show the resulting memory footprint in Fig. 1.
As target, we select the Wismote and rely on the Contiki
OS [6]. To provide Internet connectivity IP is required, pro-
vided in form of IPv6. Further, to gather environmental data,
libraries to operate and process sensor values are used. In ad-
dition, a filesystem stores data, e.g., in monitoring scenarios.
To allow to act both as server and client, an application layer
protocol (CoAP) is added. Depending on the use case and
underlying network, this communication needs to be secured.
Thus, we utilize DTLS along with its cryptographic function-
ality for AES and Elliptic Curve Cryptograhpy (ECC). In
total, this results in 97.68 KB of ROM and 11.97 KB of RAM
(cf. Fig. 1). Though this codebase already provides a basic
set of functionality, adding features is challenging depending
on the platform [3]. In the worst case, devices can neither add
application logic nor apply security updates or optimizations,
e.g., compression [8] or Denial of Service (DoS) protection.

Hitherto, increasing memory demands frequently resulted
in the replacement of existing devices with less constrained de-
vices. Given the sheer number of envisioned devices [1], this

introduces unnecessary costs and following this procedure
only forces to steadily exchange deployed devices, wasting
resources and prohibiting sustainable deployments.

3 Related Work
Based on the mentioned problems (cf. Sec. 2), we focus

on related work, that adapts or realizes protocol stacks for the
IoT, or targets updates and reconfiguration after deployment.
Adapting Protocol Stacks: A key enabler for the IoT is
the use of standardized protocols to allow a global intercon-
nection over the Internet. Due to resource constraints [3],
adaptations were proposed by academia and standardization
organizations. To achieve IP end-to-end connectivity, 6LoW-
PAN [14] defines an adaptation layer to realize IPv6 over low-
power wireless links. Typical deployments utilize leaner, less
feature rich transport protocols, e.g., UDP, as TCP is rather
heavyweight, e.g., due to accounting and retransmissions [1].
To further connect constrained and traditional networks, pro-
tocols like CoAP [18] simplify the mapping to HTTP. Though
not originally intended for the IoT, DTLS [16] emerged as a
lightweight security protocol [10, 13]. Optimizations allow
protocols like DTLS, HIP DEX [15] and minimal IKE [11]
to efficiently operate, though cryptographic operations chal-
lenge limited processing powers [10]. Other efforts delegate
resource heavy operations to more powerful devices [9].

Still, further efforts are required to support a multitude of
protocols, upcoming optimizations, and updates. Yet, not all
functionality is needed in parallel all the time, an untapped
potential we target with SPLIT to realize a sustainable IoT.
Adaptivity, Updates and Reconfiguration: A major chal-
lenge in the IoT is to enable adaptivity after deployment. This
includes reconfiguration or complete exchanges of function-
ality, which was not provided in parallel due to constraints.
Thus, approaches that utilize script interpreters, virtual ma-
chines [12, 22], or image based updates [4, 21] emerged to
realize this flexibility. An advantage of the first approaches is
their run-time interpretation of scripts or intermediate code.
However, they exhibit increased memory requirements and
execution times than native code [5]. The latter targets to up-
date the image in situ, introducing time and communication
overhead for complete binaries [17]. Thus, state-of-the-art
distributes only deltas between versions and optimizes compi-
lation to produce minimal differences [4,21]. Still, this targets
long term changes, e.g., bug-fixing, as it involves patching
and rebooting, and not changing to new functionality due to a
new, maybe transient, environmental situation.

In contrast, run-time dynamic linking approaches divide
the firmware into a static and dynamic part. This is similar to
approaches in less-constrained computing environments with
feature-rich OSs, that enable loading of Dynamic Libraries
to add functionality after the program start or add Kernel
modules without rebooting. A method to apply these features
to the IoT is proposed in [5] for Contiki [6]. Building upon
this, REMOWARE [19] and GITAR [17] optimize the module
handling, in terms of memory or easier module exchange.

Despite the ability to dynamically update and reconfigure
code, these approaches focus on support for updates rather
than reducing the overall memory requirements. In the next
section, we discuss how these systems influence our approach.

50



4 On-demand Loading of Functionality
As illustrated in Sec. 2, realizing an IoT stack and adding

necessary application code can easily exceed the available
memory of many constrained IoT devices, limiting the overall
functionality that can be realized. We thus propose Smart
Protocol Loading for the IoT (SPLIT), to enable on-demand
loading of functionality. By that, we target to enable resource
constrained devices to use a variety of functionality, without
the need to consider ROM limitations. To achieve this, we
propose to realize base functionality within the ROM itself,
but outsource further functionality split into (multiple) mod-
ules to the less constrained flash storage of devices. In the
following, we motivate the applicability of this approach.

Many use-cases, e.g., industry or home automation require
IoT devices to communicate sensitive data over the Internet.
Such communication needs to be secured, preferably utilizing
standardized protocols like DTLS. However, after the hand-
shake of a security protocol, which contributes the major part
of the memory requirements, this functionality is not required
for following data transmissions. Similarly, protocols above
the transport layer1 are not required for sensor readout or
application processing. The key observation is that we can
split functionality into smaller modules that do not need to be
present in memory in parallel, due to the general workflow.

At the same time, IoT devices possess a comparably
large flash storage, i.e., MB vs. KB, which is typically only
marginally occupied by sensed data or device specific con-
figuration. This provides a natural location to store currently
not required modules, enabling us to increase the usable code
base, i.e., functionality, only limited by the size of the flash
storage, which is at least an order of magnitude larger.

We discuss our design (cf. Fig. 2) along an exemplary use
case. An application on a device needs to establish a secure
communication with an Internet-based service. The respective
protocol is not included in the device’s ROM, but present in
form of modules (m1-m3) in the flash storage. We assume
these to represent the handshake, the secure transfer, and the
teardown of the protocol. When an application now wants to
utilize the provided functionality, it triggers the Loader.

To simplify this process for developers, we propose to em-
ploy approaches as in [19]. Accordingly, a developer defines
a task, e.g., initialize communication, that is interpreted by the
Loader, e.g., provided to the application via an API, which
in turn executes the required modules in order. Alternatively,
the modules could each link to another, such that a successful
return triggers to load and execute the following module.

The Loader copies the required code of m1 from the de-
vice’s flash storage to RAM. To always have sufficient mem-
ory available for this copy operation, SPLIT statically reserves
memory. Specific values are discussed in Sec. 5. Before
execution of the module, the Loader has to check if all sym-
bols are resolved. These include symbols that link to basic
firmware (global) functionality, e.g., memory allocation or
file access, and to intra-module (local) functionality, e.g., mul-
tiple functions in one module that call each other [5, 17, 19].
After this, the module is ready and the entry point is called.

1UDP, 6LoWPAN, and core functionality are key requirements for the
envisioned IoT and, thus, we decided to not split below the transport layer.

OS	
Storage	

App	

RAM	ROM	
OS	

SPLIT	
	State	Mgmt.	

Loader	 SPLIT	

Applica8on	

m1	

m1	

m2	

m2	

m3	

Figure 2. Functionality with a high memory footprint
is split into modules and stored on the external storage.
When needed, these are loaded, prepared, and executed.

During execution, m1 needs to allocate memory for a data
structure that is used by multiple modules, e.g., to store peer
information. Thus, we add a State Management component
that handles memory allocations for state required across
modules. Other memory management tasks, e.g., for transient
operations inside the modules, are still handled by the OS.
After handshake completion, the Loader continues the proto-
col by loading and executing m2. Depending on the available
memory, m1 can either stay active or has to be unloaded to
free up space. If memory permits and m1 is frequently used,
the former reduces the overall loading time. After successful
execution, the Loader loads m3. In case of an error, it depends
on the protocol or application if re-running the current module
is sufficient or a rollback to a previous module is required.

With this approach, we reduce the overall ROM utilization
and simultaneously increase the available functionality on the
device, in principle only limited by the available flash storage.

4.1 Splitting Protocols into Modules
In the following, we show the modularization of DTLS as a

representative security protocol. Especially security protocols
require manifold functionality ranging from large state ma-
chines to handle various packet types during connection setup
over symmetric to public key cryptography [10, 11, 13, 15, 16].
Furthermore, mechanisms that tailor these protocols to effi-
ciently operate despite limited processing power and lossy,
low-power wireless networks in the IoT, trade computation
speedups against increased memory requirements [8, 10].

Fig. 3 shows the DTLS handshake and subsequent ap-
plication data exchange. The handshake consists of several
packets divided into Flights. Flights 1-2 implement a return-
routability test to detect spoofed IP addresses. The Hello
messages in Flights 3-4 negotiate DTLS parameters, e.g., the
cipher. Furthermore, Flights 4-5 establish cryptographic keys
(KeyExchanges) and authenticate the server to the client (op-
tionally also vice versa) with Certificates. ChangeCipherSpec
and Finished in Flights 5-6 validate and finish the handshake.

This deterministic handshake procedure allows for a nat-
ural modularization of DTLS, e.g., along the flights or mes-
sages. However, flight-based modules are too large for our
target devices. Thus, in a simple approach, we would split
DTLS functionality into two modules for each message: One
for processing and another for creating and sending of the
message. Thus, we achieve efficient memory usage as mod-
ules only occupy memory when needed for the processing of
a respective packet. Furthermore, we reduce incurred over-
heads as a handshake uses each module only once (two times
for ClientHello modules). The same approach can be applied
to application layer protocols, e.g., CoAP [18] which pro-

51



Flight 1 

Flight 2 
Flight 3 

Flight 4 

Flight 5 

Flight 6 

Server 

ClientHello 
 HelloVerifyRequest 

 
 ClientHello 

 ServerHello 
Certificate 

ServerKeyExchange 
CertificateRequest 

ServerHelloDone 
 
 Certificate 

ClientKeyExchange 
CertificateVerify 
ChangeCipherSpec 
Finished 
 
 

ChangeCipherSpec 
Finished 

AppData 
 

Client 

Figure 3. We separate DTLS messages into modules (in-
dividual messages). The granularity is tunable and proto-
col determinism allows for mitigating latency overheads.

cesses GET, PUT, POST, and DELETE requests. As SPLIT
does not define the granularity of modules a priori, also alter-
native modularizations are possible. Moreover, even if CoAP
fits into a single module, offloading it can still be beneficial
as it frees resources for other resource-intensive protocols.

5 Implementation and Evaluation of SPLIT
Next, we describe our prototypical implementation of

SPLIT’s architecture and analyze its applicability on con-
strained devices. Moreover, we illustrate how we prepared the
protocols for SPLIT. Subsequently, we evaluate the runtime
overhead in comparison to a default DTLS implementation.
5.1 Implementation & Protocol Splitting
SPLIT Prototype: Our prototypical implementation of SPLIT
is based on Contiki 2.7 [6]. We adapt and extend the Default
Loader [5] with respect to our design in Sec. 4. Following
our scenario, we choose Contiki with integrated IPv6 sup-
port over IEEE 802.15.4 links, i.e., 6LoWPAN, as our base
OS. As modules are stored on the flash storage, we also in-
clude a file system. Modules use the Executable and Linkable
Format (ELF), also used by the Default Loader. As target
platform, we select the MSP430X-based Wismote which pro-
vides 16 KB of RAM and a minimum of 128 KB ROM (up to
256 KB). Although we target to improve the protocol handling
of constrained devices that may expose less than the afore-
mentioned ROM sizes [3], the remaining headroom alleviates
the implementation, debugging and evaluation process.

To trigger the Loader to execute a protocol or application,
the developer calls a defined entry point, e.g., instructs the
Loader to start a handshake or measurement. As a first step,
the Loader locates the respective initial module on the file
system, parses respective header information, e.g., offsets for
symbols or string tables, and copies the binary code to the pre-
allocated memory. Using the stored information, the Loader
checks the relocation table. This contains symbols that can-
not be resolved at compile time, either because they are not
provided by the module itself (base firmware functionality),
or their location is not known before the actual copy process.
For base firmware functionality (global symbols), the Loader
retrieves the name, e.g., printf, looks up the address in the
symbol table of the firmware and writes this address to the re-

Table 1. Size in KB when compiled for the Wismote.
∗Values obtained by measurements during evaluation.

SPLIT ROM RAM
Contiki with IPv6 39.34 7.85

+ Loader + State Mgmt. + 2.57 + 0.82 + 4.25*

+ SHA256 + µECC + AES + 3.35 + 9.59 + 10.72 + 0.18
+ Symbol Table + 9.97

Σ 75.54 13.1

spective location. Depending on the use-case and deployment,
the modules can be pre-linked to the core firmware [5, 17],
which allows to remove the necessary code for the global
symbol linking as well as the symbol table itself, thus saving
space. On the downside, this limits flexibility, as the modules
cannot be used across platforms with different base firmware.
In case of functionality provided by the module itself, the
Loader calculates the final addresses after copying the code to
the memory, using the starting address and offsets contained
in the header. The standard loader employs linear search on
the symbol’s name to find this information in the ELF file. To
obtain the data with a single flash operation, we instead read it
from an ordered list distributed with the module. This process
is repeated for read-only data and initialized variables.
Preparing Protocol Modules: With the SPLIT-architecture
in place, the next step is to provide loadable modules. Follow-
ing Sec. 4.1, we split DTLS along its handshake and secure
exchange phases. We choose tinyDTLS 0.8.2 and replaced
its ECC implementation with µECC (micro-ECC) as it ex-
hibits faster processing at a minor size overhead. In this
process, two requirements have to be tackled: i) We need
to minimize the module interdependencies, i.e., extract self-
contained modules if possible. Moreover, ii) we need to stay
within platform dependent memory boundaries, i.e., use the
available RAM efficiently, such that other operations are still
possible. Given these requirements, we obtain 20 modules for
tinyDTLS. Thereof client and server each have 5 individual
modules, e.g., handling a client or server key exchange, and
10 common modules, e.g., initialization, retransmit handling
or handshake finishing. Moreover, we decouple stand-alone
functionality, i.e., SHA-256 hashing, µECC as well as AES,
and place it in the ROM. We argue that this can also be uti-
lized when disseminating modules, e.g., checking signatures,
and thus save loading steps. In addition, we decouple per-
connection state to be stored by the State Management.
SPLIT Memory Breakdown: We summarize all sizes of the
static base firmware in Table 1. The base firmware (Contiki +
IPv6 support) occupies 39.34 KB ROM and 7.85 KB RAM.
Adding the Loader (+ file system support) and the State Man-
agement component adds 2.57 KB to the needed ROM and
0.82 KB of RAM. To provide space for the modules, we re-
serve 1.32 KB of RAM to fit the largest module and further
reserve 2.93 KB for protocol state (4.25 KB in total). The
amount of reserved memory is empirically chosen and could
be precomputed, e.g., using static code analysis and use-case
knowledge, e.g., number of peers. Additionally, we move
stand-alone functionality used by DTLS to the ROM, result-
ing in 3.35 KB for the SHA-256 hash implementation and
9.59 KB for µECC. Moreover, the AES implementation oc-
cupies 10.72 KB of ROM and 182 B of RAM. Finally, we

52



parse & copy
link global sym.

link local sym.
rel. RO data

m
1
m

2
m

3
m

4
m

5
m

6
m

7
m

8
m

9
m

10
m

11
m

12
m

13
m

14
m

15
m

16
m

17
m

18
m

19
m

20

Module

0
20
40
60
80

100
120
140
160

T
im

e
[m

s]

Base Modules Client Server

(a) Per module loading time for tinyDTLS.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Step during DTLS handshake (Client)

10−1

100

101

102

103

104

105

T
im

e
[m

s]

F1 F2,3 F4,5 F6 AppData

Default Split Split-Opt Split-Opt+

(b) Default vs. SPLIT Client (default counter-
part). Annotations correspond to DTLS flights.

s1 s2 s3 s4 s5 s6 s7 s8 s9

Step during DTLS handshake (Server)

10−1

100

101

102

103

104

105

T
im

e
[m

s]

F1,2 F3,4 F5,6 AppData

Default Split Split-Opt Split-Opt+

(c) Default vs. SPLIT Server (default counter-
part). Annotations correspond to DTLS flights.

Figure 4. Overhead introduced by SPLIT for individual modules and during operation.

include the symbol table of the complete firmware, which
adds 9.97 KB to the needed ROM. In total, this SPLIT-enabled
firmware occupies 75.54 KB of ROM and 13.1 KB of RAM.
The tinyDTLS modules occupy 37.82 KB of flash memory,
including all necessary ELF header information, e.g., string ta-
bles or relocation information. For actual code, 13.28 KB are
necessary. This firmware fits the definition of constrained de-
vices (specifically Class 1 devices) [3], but enables increased
functionality that is in principle only limited by the storage.

5.2 Performance
SPLIT Base Time Overhead: Next, we evaluate SPLIT’s
processing time overhead based on the extracted tinyDTLS
modules. To evaluate our prototype in a reproducible manner,
we utilize the Contiki Cooja simulator. We program a client
based on our SPLIT-firmware, populate the modules on the
storage of the simulated device, subsequently load the mod-
ules, and measure the time for several steps during the loading
process. Fig. 4(a) depicts these times for our 20 tinyDTLS
modules. For better visibility, we sort them by their runtime
and not in their order within the handshake process.

The first step consists of copying the relevant data from
flash into RAM and parsing ELF headers, that contain infor-
mation about symbols that have to be linked or read-only data
that has to be copied. If not stated otherwise, the numbers
provided in the following are the average and the standard
deviation. This first step takes 10.64 ms ± 0.003 ms for the
ELF files that have a size between 0.65 KB to 3.84 KB. Sub-
sequently, the Loader links symbols, i.e., globally against the
firmware and locally inside the module, which takes 0.8 ms ±
2.15 ms per global and 7.52 ms ± 6.57 ms per local symbol.
The current prototype performs a rather naive approach, re-
trieving each global symbol individually from the table. Thus,
this step increases with the amount of symbols. Optimizations
include pre-linking global symbols, saving addresses in the
ELF after the first load, or caching for repetitive lookups.
SPLIT Overhead during Execution: To analyze the im-
pact of SPLIT during operation, we compare the processing
time of a SPLIT-enabled client and server to execute a DTLS
handshake with an unaltered counterpart over a single IEEE
802.15.4 hop against a Default client and server. The hand-
shake is based on ECC utilizing the NIST P-256 curve [2],
SHA-256 hashes, and mutual authentication.

We divide the handshake into steps and measure the in-
dividual processing times for the Default and SPLIT client.
In this configuration, and with regard to the available RAM
(cf. Table 1) and present modules, we are only able to load

one module at a time. Thus, the following evaluation can be
seen as a worst-case scenario. Based on the measurements,
we further derive processing times for a SPLIT-Opt client that
uses pre-linked modules (cf. Sec. 5.1). We observed retrans-
missions in the Default and SPLIT case, as DTLS does not
consider the limited processing abilities of peers. However,
approaches to drastically mitigate this effect exist [10]. We
thus exclude retransmission influences in our further analysis.
The results are summarized in Fig. 4(b). In the Default case,
the whole processing time, including application data trans-
mission (s11), takes 18.75 s. When performing the handshake
with a SPLIT-enabled client, the overall processing time in-
creases by 33.74 % to 25.08 s. As summarized in Fig. 4(c), a
SPLIT-enabled server that executes a handshake with an un-
altered client takes 24.82 s, while the Default server requires
18.88 s. In this case, SPLIT adds 31.45 % of overhead com-
pared to the Default implementation. The relative high overall
processing is due to expensive ECC calculations and mutual
authentication. Such a setup is required to ensure end-to-end
security without dependence on a trusted delegation point [9].
Thus, we follow recommended standard settings [2].

Finally, we analyze what-if scenarios following our discus-
sion about potential optimizations in Sec. 5.1. We point out
that although the current version of SPLIT offers flexibility,
the results can be seen as worst-case times, based on the re-
quired steps. To analyze the potential benefit of an optimized
version using pre-linked modules, we calculate the processing
time without the need to link global symbols. As illustrated in
Fig. 4 (SPLIT-Opt), this could reduce the overhead to 23.34 %
(23.13 s in total) for the client. Similarly, on the server, this
can reduce the overhead to 21.92 % (19.25 s). Although these
overheads are not negligible, this is a worst-case evaluation,
as we can only load one module at a time. Thus, we further
analyze a special version of SPLIT, called SPLIT-Opt+, where
we also assume the local symbols to be set in the module
after the first load. This is possible as only one module is
active at a time in this setting and thus the memory location
is always the same, i.e., intra-module dependencies do not
change their address. Following this, the times for subsequent
operations can be reduced, i.e., 19.67 s (+ 4.88 %) for the
client and 19.81 s (+ 4.9 %) for the server.

6 Deployment Considerations
Although SPLIT allows to increase the available function-

ality, this comes at the price of induced overhead, with respect
to time and energy. In the following, we discuss aspects that
have to be considered and propose mitigation strategies.

53



Energy Overhead: To assess the energy overhead, we eval-
uated a toy example on a real Zolertia Z1. We measured
execution time and power consumption for module loading
utilizing a measurement platform2. Although tasks like wire-
less communication consume much more energy, excessively
accessing the flash can add noticeable consumption and re-
duce battery lifetime. Thus, depending on the use case, a
careful execution plan can limit this effect, e.g., a DTLS se-
curity association may stay active for a certain amount of
connections, instead of requiring a handshake over and over
again. We argue that this trade-off is acceptable to realize a
flexible, extensible, and thus sustainable deployment.
Adapting to available resources: For a modularized proto-
col, each loading of a module adds overhead. Based on the
available memory, the size of modules can be increased by
adding functionality to save loading steps. Exemplary, the
last message of a DTLS flight triggers the first transmission
of the following flight (cf. Fig. 3). Thus, combining corre-
sponding functionality saves one loading step. While this
increases performance at the cost of higher memory usage,
we can also pursue the opposite direction: Decreasing the
size yields more loading steps, but decreases memory usage.
Reducing latency: For communication protocols, on-
demand loading of modules upon packet reception increases
latency. However, protocol determinism allows us to load
modules in advance, e.g., while waiting for reception of an
initial message or response, the respective modules can al-
ready be loaded. Devices that act as a server may receive an
initial message from a remote peer at any time. To have mod-
ules available upon reception, they could preload modules for
corresponding processing. Similarly, protocol determinism
allows determining which type of message is expected next.
Mitigating DoS threats: Using SPLIT requires precaution to
not make devices prone to DoS attacks. By alternating packet
types, an attacker can force a device to load and unload mod-
ules. However, SPLIT only accounts for the on-demand load-
ing overhead, i.e., forcing a device to process a packet is not
specific to SPLIT. Thus, heavyweight protocols typically im-
plement DoS protection (cf. Sec. 4.1). As such mechanisms
are lightweight to not introduce new DoS potential, keeping
them in memory is reasonable, and requires an attacker to
pass them to trigger operations of SPLIT. Moreover, devices
activate this protection only in case of a presumed attack [10],
not occupying memory during typical operation.

7 Conclusion
In this paper, we enable IoT devices to support a broad set

of functionality. To this end, we present SPLIT which enables
on-demand loading of functionality outsourced as (multiple)
modules to the significantly lesser constrained flash storage
of devices. We explicitly target applications and protocols
above the transport layer and adapted an implementation of
the commonly used security protocol DTLS to support SPLIT,
whereas the concept of SPLIT is not limited to this. Our worst-
case evaluation, e.g., only one active module at a time, shows
the principle applicability of SPLIT on resource constrained
devices. Moreover, we identified aspects that need to be

2http://www.comsys.rwth-aachen.de/short/powergraph

taken into account for actual deployment. We argue that with
careful planning, a key aspect of future work, SPLIT’s benefits
can outweigh its overheads.

With SPLIT, we complement existing mechanisms that
enable devices to cope with limited processing and energy
resources, as well as low power wireless communication.
By enabling devices to execute various functionality ranging
from diverse secure communication protocols to interaction
with their environment, we contribute to this active develop-
ment of the IoT and its functionality-rich vision. Eliminating
the need to replace constrained devices, SPLIT can help in
realizing a more sustainable deployment.
8 Acknowledgments

We thank Matteo Ceriotti for the fruitful discussions. This
work has been funded by the German Research Foundation
(DFG) as part of the CRC 1053 MAKI. We would like to thank
the DFG for the support within the Cluster of Excellence "In-
tegrative Production Technology for High-Wage Countries".
9 References
[1] L. Atzori et al. The Internet of Things: A survey. Computer Networks,

54(15), 2010.
[2] E. Barker et al. NIST Special Publication 800-57 Recommendation for

Key Management, Part 1, Rev 3: General. NIST SP, 2012.
[3] C. Bormann et al. Terminology for Constrained-Node Networks. RFC

7228 (Informational), 2014.
[4] W. Dong et al. Optimizing relocatable code for efficient software

update in networked embedded systems. ACM TOSN, 11(2), 2014.
[5] A. Dunkels et al. Run-time dynamic linking for reprogramming wire-

less sensor networks. In ACM SenSys, 2006.
[6] A. Dunkels et al. Contiki-a lightweight and flexible operating system

for tiny networked sensors. In IEEE LCN, 2004.
[7] R. Hummen et al. A Cloud design for user-controlled storage and

processing of sensor data. In IEEE CloudCom, 2012.
[8] R. Hummen et al. Slimfit – A HIP DEX compression layer for the

IP-based Internet of Things. In IEEE WiMob, 2013.
[9] R. Hummen et al. Delegation-based authentication and authorization

for the IP-based Internet of Things. In IEEE SECON, 2014.
[10] R. Hummen et al. Tailoring end-to-end IP security protocols to the

Internet of Things. In IEEE ICNP, 2013.
[11] T. Kivinen. Minimal Internet Key Exchange Version 2 (IKEv2) Initiator

Implementation. RFC 7815, 2016.
[12] J. Koshy et al. VMSTAR: synthesizing scalable runtime environments

for sensor networks. In ACM SenSys, 2005.
[13] H. Kwon et al. Challenges in Deploying CoAP Over DTLS in Resource

Constrained Environments. In WISA. 2015.
[14] G. Montenegro et al. Transmission of IPv6 Packets over IEEE 802.15.4

Networks. RFC 4944 (Proposed Standard), 2007.
[15] R. Moskowitz et al. HIP Diet EXchange (DEX). IETF Internet-Draft

draft-ietf-hip-dex-05, Feb. 2017. Work in Progress.
[16] E. Rescorla et al. Datagram Transport Layer Security Version 1.2. RFC

6347 (Proposed Standard), 2012.
[17] P. Ruckebusch et al. Gitar: Generic extension for internet-of-things

architectures enabling dynamic updates of network and application
modules. Ad Hoc Networks, 36, 2016.

[18] Z. Shelby et al. The Constrained Application Protocol (CoAP). RFC
7252 (Proposed Standard), 2014.

[19] A. Taherkordi et al. Optimizing Sensor Network Reprogramming via
in Situ Reconfigurable Components. ACM TOSN, 9(2), 2013.

[20] H. Wirtz et al. Enabling ubiquitous interaction with smart things. In
IEEE SECON, 2015.

[21] Z. Yang et al. R-code: Network coding based reliable broadcast in
wireless mesh networks with unreliable links. In GLOBECOM, 2009.

[22] X. Zhu et al. ReLog: A systematic approach for supporting efficient
reprogramming in wireless sensor networks. Journal of Parallel and
Distributed Computing, 102, 2017.

54


