
Is the Web ready for HTTP/2 Server Push?
Torsten Zimmermann, Benedikt Wolters, Oliver Hohlfeld, Klaus Wehrle

Communication and Distributed Systems, RWTH Aachen University
{zimmermann,wolters,hohlfeld,wehrle}@comsys.rwth-aachen.de

ABSTRACT
HTTP/2 supersedes HTTP/1.1 to tackle the performance challenges
of the modern Web. A highly anticipated feature is Server Push,
enabling servers to send data without explicit client requests, thus
potentially saving time. Although guidelines on how to use Server
Push emerged, measurements have shown that it can easily be used
in a suboptimal way and hurt instead of improving performance.We
thus tackle the question if the current Web can make better use of
Server Push. First, we enable real-world websites to be replayed in a
testbed to study the effects of different Server Push strategies. Using
this, we next revisit proposed guidelines to grasp their performance
impact. Finally, based on our results, we propose a novel strategy
using an alternative server scheduler that enables to interleave
resources. This improves the visual progress for somewebsites, with
minor modifications to the deployment. Still, our results highlight
the limits of Server Push: a deep understanding of web engineering
is required to make optimal use of it, and not every site will benefit.

CCS CONCEPTS
• Networks → Application layer protocols; Network mea-
surement;

KEYWORDS
HTTP/2, Server Push, Interleaving Push
ACM Reference Format:
Torsten Zimmermann, Benedikt Wolters, Oliver Hohlfeld, Klaus Wehrle.
2018. Is the Web ready for HTTP/2 Server Push?. In CoNEXT ’18: Interna-
tional Conference on emerging Networking EXperiments and Technologies,
December 4–7, 2018, Heraklion, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3281411.3281434

1 INTRODUCTION
The Hypertext Transfer Protocol (HTTP) is the de-facto protocol
for realizing desktop and mobile websites as well as applications.
Traffic shares of> 50%, e.g., in a residential access link [24], an
IXP [6], or backbone [12, 33], express this dominance. Despite this,
HTTP-based applications are built on top of a protocol designed
nearly two decades ago, now suffering from various inefficiencies in
the modern Web, e.g., Head of Line (HoL) blocking. To address the
drawbacks, HTTP/2 (H2) was standardized [8] as H1’s successor.
Among others, a highly anticipated feature [17] is Server Push,
changing the pull-only into a push-enabled Web. It enables servers
to send additional resources without explicit requests, e.g., send a
CSS upon a request for index.html, thus saving round trips.
CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in CoNEXT
’18: International Conference on emerging Networking EXperiments and Technologies,
December 4–7, 2018, Heraklion, Greece, https://doi.org/10.1145/3281411.3281434.

J FM AM J J A S O N D120K

180K

240K HTTP/2

J F M AM J J A S O N D

400

800 Server Push

Figure 1: Adoption of HTTP/2 and Server Push over the course
of one year1(2017) on the Alexa 1M list [39]. Although the use of
both is increasing, the adoption of Server Push is relatively low.

This potential for speeding up the Web manifests in a grow-
ing interest in Server Push, both among CDNs [10, 38] and in
research [14, 22, 32, 39]. These efforts face the challenge that the
standard only defines the Server Push protocol, not how to use
it, i.e., what to push when, determining its performance. In this
regard, previous work provided several strategies or approaches
how to use Server Push. They involve signaling clients what to
fetch next [32], dependency analysis of content [14], gaze tracking
to identify regions of interest to be pushed [22], or guidelines for
its basic usage [10]. However, its usage is still low relative to the H2
adoption (cf. Fig. 1) [35, 39]—potentially given its complex usage.
In previous studies, we showed that Server Push can be easily used
suboptimally in real-world deployments and hurt instead of im-
proving performance [39, 40]. These findings, as well as discussions
among web and protocol engineers [7, 23, 26, 28], highlight that
the quest for optimal Server Push usage is far from being settled.

We thus tackle the question what influences the Server Push
performance, how push strategy performance can be reproducibly
tested on any website, and how a new strategy can speed up the cur-
rent Web without major modifications. Specifically, we i) propose a
new evaluation method to automatically and reproducibly evaluate
Server Push strategies on any website by replay. This complements
measurements of real-world deployments and provides a method
to systematically understand the isolated baseline performance of
Server Push strategies for a broad class of websites. We ii) use this
method to study the performance impact of strategies on real-world
and synthetic websites. In this regard, we revisit existing strategies
proposed in related work and find that pushing all objects, as a
straightforward approach, can hurt the performance. By varying
the amount, order, and type of objects, we observe positive and
negative effects, highlighting the challenge of optimal usage. Given
these results and based on an analysis of the respective rendering
process in the browser, we iii) investigate a new approach to push
the right resource at the right time, by interleaving the base docu-
ment and pushed objects. This can lead to a faster visual progress
for some popular websites. Still, our results also highlight the limits
of Server Push, as it requires a deep understanding of the load and
render process and not every website can benefit.

1Live results available at https://netray.io

https://doi.org/10.1145/3281411.3281434
https://doi.org/10.1145/3281411.3281434
https://netray.io


CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Zimmermann et al.

2 BACKGROUND
We now briefly present an overview of H2, as well as two prominent
metrics to assess the performance of websites.

2.1 H2 Overview
H2 was standardized in 2015 [8] to replace H1. A key difference is
a binary instead of an ASCII representation, allowing easier fram-
ing and parsing, which increases the processing efficiency [17].
Further, H2 allows to multiplex requests/responses over one con-
nection, leading to parallel streams, identified by IDs. Clients can
prioritize streams, e.g., to prefer certain objects. Multiplexing also
reduces application layer HoL blocking, an issue in H1. Like H1,
H2 is stateless, thus header information for a connection is repeti-
tive. As mitigation, H2 adds header compression [30]. Though not
mandatory, most implementations use H2 via TLS. Besides privacy
and security benefits, a TLS-tunnel over deployed intermediaries
eases the deployment of new protocols [17].
H2 Server Push. Finally, H2 adds Server Push. To grasp its poten-
tial benefits, recall the classic H1 request/response model: a browser
requests the base document, parses it, and then requests all discov-
ered objects individually. Contrary, an H2 server can push objects
without explicit request, e.g., a CSS upon a request to index.html,
thus saving round trips. Hence, H2 allows transferring resources
before the browser finishes parsing. To push, a server announces
information about the object and stream it will use. Afterward, the
data is sent. A server is only allowed to push content from ori-
gins under its authority. Further, a client can cancel an announced
push, which is useful if the object is already cached. Also, a client
can deactivate the feature by setting SETTINGS_ENABLE_PUSH in
a specific settings header to 0 at connection startup. Yet, as seen
in own measurements, by the time a client cancels the push, the
object can be already in flight. Also, the standard does not include
mechanisms to signal the cache status, but drafts and academic
approaches exist [20, 29].

2.2 Website Performance Metrics
PLT. In recent years, the key metric to measure performance was,
and still is, Page Load Time (PLT) [14, 22, 31, 35–37], which repre-
sents the time between events in the browser’s W3C Navigation
Timing API. Mostly, it refers to the time of the onload event, i.e.,
a resource and its dependent resources finished loading, but other
events are used in related work as well. Here, we define PLT as the
time between the connectEnd event, i.e., the connection is estab-
lished (DNS, TCP and TLS) and start of the onload event. Still, PLT
can be an over- or underapproximation [22], e.g., events may refer
to items not in view, and some resources can be loaded by scripts
afterward. Hence, PLT can fail to capture human perception [11, 40].
SpeedIndex. To overcome the limits of PLT, Google proposed
SpeedIndex [5] to capture the visual progress of above-the-fold
content, i.e., content in the viewport without scrolling. It expresses
how complete a website looks at various points of its loading pro-
cess. To calculate SpeedIndex, the loading process is recorded as a
video and each frame is compared to the final frame, thus measur-
ing completeness. While this visual metric is an improvement over
PLT, capturing a video may only be feasible for studies in the lab
but not in the wild [11, 25].

3 RELATEDWORK
Our work relates to approaches that focus on H2 and Server Push
performance, as well as frameworks and guidelines.
H2.Wang et al. [37] provided the first analysis of SPDY, H2’s prede-
cessor. Comparing SPDY to H1 on the transport level, they observe
benefits, especially for large objects and low loss, and for few small
objects in good conditions with large TCP initial windows. Also,
Server Push can improve PLT for large RTTs, but the analysis of
several policies also reveals impairments. De Saxcé et al. [15] eval-
uate H2 and focus on latency and loss, showing that H2 is less
prone to higher latencies than H1. They regard Server Push as valu-
able, but more performance research is required. Varvello et al. [35]
present an adoption study (Alexa 1M) and compare the real-world
performance of H2 websites to their H1 counterparts. They observe
benefits for 80 % of websites, but also degradations, without an
explicit focus on Server Push.
Server Push. In previous work [39], we complement the view on
H2’s adoption provided in [35] and target broader sets, i.e., IPv4
scans and all .com/.net/.org domains, and Server Push explicitly.
While the adoption of H2 and Server Push is rising, the latter is
orders of magnitude lower (cf. Fig. 1). Using different protocol set-
tings, we observe that Server Push can improve as well as hurt
the performance, but the results cannot be mapped to simple rea-
sons (e.g., amount of bytes pushed), and that further analysis is
required. Instead of resources, Han et al. [20] propose to push hints,
enabling the client to request critical resources earlier, which can
improve the performance. Rosen et al. [31] analyze the benefits and
challenges of Server Push and show that network characteristics
play a major role in the effectiveness, similar to [15, 37]. As one
guideline, they propose to push as much as possible, which not al-
ways leads to improvements. Butkiewicz et al. [14] present Klotski,
which prioritizes high-utility resources, e.g., above-the-fold or by
user preferences, obtained via surveys, live ratings, and offline mea-
surements. To deliver those, Server Push is used. Kelton et al. [22]
prioritize objects of visual interest, identified in user studies via
gaze tracking. As objects can depend on each other, they employ
dependency analysis [36] to prioritize objects and send high prior-
ity objects via Server Push. Still, as there are impairments for some
websites, they revert to the default setting in such cases. Vroom [32]
uses a client scheduler that parses preload headers [18], containing
dependency hints for resources (on other servers) to be fetched. As
in [14], high priority resources are pushed. This combination can
improve performance compared to base H2. In parallel to our work,
results for the real-world performance of Server Push presented at
the IETF [23, 26] indicated that more measurements are needed to
grasp its benefits and even provoked the discussion, if Server Push
should be focused on in the future and be used at all.
Rules of Thumb for Push. Bergan et al. [10] provide a set of rules,
evaluated in different simulations, network settings, and websites.
We focus on rules relevant for this paper and refer to [10] for more
information. A server should i) push just enough to fill idle network
time. As soon as the browser parses the HTML and requests objects,
using push is not faster. This is contrary to [31], suggesting to
push as much as possible. Further, objects should ii) be pushed in
evaluation-dependent order, as suboptimal orders can e.g., delay
the discovery of hidden resources loaded by scripts.



Is the Web ready for HTTP/2 Server Push? CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Takeaway: Despite existing frameworks and guidelines, H2 Server
Push is still not widely in use, and if, improvements are not guaran-
teed, as shown by recent measurements of real-world deployments.
Our goal is to provide an approach to understand the isolated per-
formance of Server Push systematically and to shed light on its
applicability for the current Web, i.e., without major modifications.

4 REPLAYING PUSHWEBSITES
Although assessing the performance of Server Push in real-world de-
ployments [23, 26, 35, 39] is crucial, it imposes practical challenges.
Among other factors, websites i) can change due to dynamic third-
party content, e.g., ads [16], or ii) are subject to varying network
characteristics. This can cause misinterpretations of the results.
Hence, our goal is to understand the isolated performance of Server
Push under deterministic conditions, to reduce variability, and to
enable reproducibility. Therefore, we use a testbed to replay real-
world websites and to grasp the possible potential of Server Push.
We exemplify this by using different strategies and revisit existing
guidelines, e.g., [10, 31], to assess their overall impact. Next, we
present our testbed and evaluation of different strategies.

4.1 Controlled Push Strategy Evaluation
We base our testbed, which we make publicly available together
with more results [9], on Mahimahi [27]. This enables to record
H1 traffic to a database as request/response pairs, e.g., captured in a
browsing session. Later, this database matches requests to responses
to replay websites. Network namespaces are used to recreate the
deployment, i.e., for each IP a local server is spawned. Thus, the
same connection pattern as in the Internet is used, opposed to less
realistic setups, such as local mirroring (e.g., HTTrack) or proxies.

However, at the time ofwriting, the current version of Mahimahi
does not support H2. To enable this support in Mahimahi, we first
use the H2-capable mitmproxy [3] to capture request/responses
and convert it to Mahimahi’s record format. We add the h2o web-
server [2] and create an h2o-FastCGI module that matches and
serves responses from the record DB. Finally, we enable to spec-
ify push strategies, to define responses to be pushed. H2 supports
connection-coalescing, i.e., a server with a single IP can be authorita-
tive for multiple domains and serve content via one connection. Cur-
rently, a browser handles traffic for different origins over the same
connection if a server presents a TLS certificate that includes the
origins as Subject Alternative Names. The browser also checks if IPs
of different origins match using DNS. We thus modify Mahimahi
to generate certificates for each local server, which include domains
with the same IP. Also, we assume every server to be H2-enabled,
as in [32]. Using tc, we simulate DSL settings with 50ms RTT and
16Mbit/s down- and 1Mbit/s uplink between the client and the
servers. Please note that we do not assume any additional delay
on the servers, e.g., for additional fetches or disk access. For all
evaluation settings, we follow settings used in previous work [40]
and utilize browsertime [1] to automate Chromium 64 and replay
each website in each setting for 31 times. If not stated otherwise,
we show and discuss the median result of these repeated runs.
Evaluation. We evaluate our testbed by replaying 100 random
websites using Server Push fromAlexa 1M, with andwithout Server
Push. Fig. 2(a) shows the standard error for PLT and SpeedIndex

0 250 500 750 1000
PLT σx [ms]

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F
(s
it
es
)

0 250 500 750 1000
SpeedIndex σx [ms]

push (tb)
no push (tb)
push (Inet)

no push (Inet)

(a) Comparing the std. error σx of the performance of 100 websites
in our testbed (tb) vs. the Internet (Inet) over 31 runs.

−200 −100 0 100 200
∆PLT [ms]

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F
(s
it
es
)

−200 −100 0 100 200
∆SpeedIndex [ms]

no push
push

(b) In our testbed, we observe similar effects as in the Internet, i.e.,
improvements and detriments with Server Push when compared to

the no push case (∆ < 0 is better).
Figure 2: Evaluation of our realized testbed based onMahimahi.

(cf. Sec. 2.2), compared to their deployment in the Internet. For
95% (85 %) of websites, the error σx is < 100ms (50ms) for PLT,
with similar results for SpeedIndex. In the Internet, this holds only
for 14 % (5 %), which we attribute to varying network conditions.
These results indicate that we remove a lot of variability for the
performance results of most websites, which helps to assess the
performance impact in a reproducible manner. To evaluate if we still,
after removing this variability, observe performance improvements
and impairments as the Internet [39], we compare the performance
of Server Push against a no push configuration, i.e., the client signals
the server to disable Server Push (cf. Sec. 2.1). Pushing the same
objects as in the Internet, we observe no benefits for 49 % (35 %) of
websites in PLT (SpeedIndex) (cf. Fig. 2(b)). We thus argue that our
testbed enables to reproduce results for a lot of websites and we
still observe positive and negative effects (cf. Sec. 3).

4.2 Real-World: Altering What to Push
Next, we replay real-world websites subject to various push strate-
gies in our testbed, which enables us to study the impact on per-
formance in a controlled environment. To this end, we create two
disjunct random sets of 100 websites (HTTPS) each, one from the
top 500 (top-100) and from the top 1M (random-100) according
to Alexa. We use the Alexa list as a basis, as we expect a lot of
H2-enabled websites among this popular list [34, 39]. If there is no
H2 version, we capture the respective H1 version. Please note that
in case of an H2-enabled website, we do not capture if the website
uses Server Push, as our goal is to apply different strategies.
Pushable Objects. For the top-100 (random-100) set, 52 % (24 %)
have < 20% of pushable objects, i.e., the other objects reside on
servers beyond the authority of the pushing server. Hence, many
websites cannot push all objects.
Computing the Push Order. Next, we access the websites in
our testbed via H2 31 times, not pushing any objects. We trace
requests and priorities (cf. Sec. 2) used to obtain the landing page
and construct a dependency tree, based on these priorities. By
traversing this tree, we compute a request order. The goal is to
obtain the desired order used by the browser to request objects, to



CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Zimmermann et al.

-200 -100 0 100 200

∆SpeedIndex [ms]

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F
(s
it
es
)

top-100

-200 -100 0 100 200

∆SpeedIndex [ms]

random-100

no push
push all

(a) SpeedIndex when pushing all objects (in request order) normed
to the no push case. PLT shows a similar behavior.

-200 -100 0 100 200

∆PLT [ms]

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F
(s
it
es
)

random-100

-200 -100 0 100 200

∆SpeedIndex [ms]

random-100

no push
push 1
push 5

push 10
push 15
push all

(b) Push limited amount, normed to the no push case. Only for the
random set, due to limited objects for sites in the top set.

Figure 3: Delta (median) when pushing all (Fig. 3(a)) and a limited amount of objects (Fig. 3(b)), using a computed order.

identify an order to push. Here, we follow the rules given in [10]
(cf. Sec. 3), as suboptimal orders can have negative impacts, e.g.,
delay critical resources. Since the order is not stable across all runs,
e.g., due to client-side processing, we use a majority vote. As this
order is based on the initial connection to the origin server, all
objects are pushable (cf. Sec. 2.1).

4.2.1 Varying Amount and Type of Objects. First, we push all
pushable objects following the computed order, as push all is con-
sidered a valuable strategy in [31]. Fig. 3(a) shows the results for
SpeedIndex. In the top-100 (random-100) set only 58% (45%) of
sites benefit (PLT similar but not shown). Pushing all objects can
be harmful, as it can delay processing, and even in the positive case,
waste bandwidth or cause contention on the server [20, 32]. Thus,
we vary the amount of objects n ∈ {1, 5, 10, 15} to push. Here, we
only consider the random-100 set, as not all top-100 websites have
enough pushable resources. We again use fixed orders, limited to
the first n objects. For a small n, this is in line with guidelines [10]
(cf. Sec. 3) to push just enough to fill the network idle time. We
observe (cf. Fig. 3(b)) that pushing less can lead to less detrimental
effects, e.g., delay of processing and requests. Still, a lot of websites
exhibit no significant improvements.

Last, we analyze the impact of pushing specific object types,
again for the random-100 set. While pushing CSS or JavaScripts
(JS) can lead to positive and negative effects (no figure shown),
images lead to a worse SpeedIndex for 74 % of websites. This is no
surprise, as they do not contribute to the creation of the Document-
(DOM) or CSS Object Model (CSSOM)—both essential parts of the
layout and render process. Using the best type strategy per website,
i.e., if pushing CSS is better than JS, CSS is the best type strategy,
only 24 % (SpeedIndex) and 20% (PLT) of websites improve. Type
combinations, i.e., CSS+JS and CSS+images, lead to similar results.

Also, we analyzed the effect if we vary the computed push order
(results not shown). We observe that the impact on performance is
highly dependent on the overall amount of objects, the structure
of the HTML, i.e., when objects are referenced, and object type.
Exemplary, a suboptimal order could prefer uncritical resources,
with respect to above-the-fold, and thus delay critical resources.
Conclusion: We observe that a large fraction of resources is not
pushable as they reside on other servers. Moreover, many websites
depend on third-party content—impacting the loading process [13,
16]. Also, not many sites benefit from a push all strategy. Pushing
less can reduce negative effects, but not always improves respective
metrics. In addition, websites can benefit from different object types
to be pushed. Overall, we do not find an automatically generated
one-fits-all strategy.

Figure 4: Custom strategies normed to the no push case. We show
the average and the 95 % confidence interval (∆ < 0 is better).

4.3 Synthetic Sites and Custom Strategies
Up to now, we assumed real-world settings, e.g., content at several
servers, which can have unpredictable performance impacts. Thus,
we use synthetic websites s1-s10 that are snapshots of websites or
templates, and deploy them on a single server, i.e., we relocate
content. Again, we use request orders for push all and no push as a
baseline. Instead of automatic generation (cf. Sec. 4.2), we create
custom strategies. We inspect the browser’s loading and rendering
process and select resources that i) appear above-the-fold, or ii) are
required to paint above-the-fold content. This can lead to benefits
(cf. Fig. 4), which we discuss in two case studies. We focus on time
and size improvements, as pushing less is preferable (cf. Sec. 4.2.1).
Case Studies. s1 shows a loading icon that fades and content is
shown once the DOM is ready. Thus, we push resources blocking
the DOM construction (JS, CSS) and hidden fonts referenced in the
CSS. On average, this improves SpeedIndex (but fluctuates), by only
pushing 309 KB (1,057 KB, push all).

s5 takes 692ms (push all) vs. 1,038ms (no push) to be transferred,
but the metrics do not significantly improve. Regarding PLT, a
blocking JS is referenced late in the <body>, which requires to create
the CSSOM. This takes longer than the transfer, and the browser is
not network but computation bound, affecting the overall process,
similar to results in [32]. Our strategy pushes four render-critical
resources and some images. Yet, there is no benefit, as the browser
can request resources as fast as the server could push them, due
to a large HTML, resulting in no network idle time. We notice the
same for s8. The HTML transfer requires multiple round trips to be
completed. After the first chunk, the browser can issue requests for
six render-critical resources referenced early, and using push does
not change the result, similar to findings in [10].
Conclusion: Pushing all resources in a request order in this set-
ting, i.e., all resources hosted on a single server, can reduce PLT
compared to no push, but SpeedIndex rarely improves. Moreover,
we do not observe significant detrimental effects. Yet, pushing ev-
erything can be wasteful in terms of bandwidth, e.g., if the resource
is already cached, and cause contention between objects [22]. For



Is the Web ready for HTTP/2 Server Push? CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

(a) h2o’s default scheduler treats a push (e.g., CSS) as child of the
parent stream (HTML). If the parent does not block, the entire stream
is sent, possibly delaying critical resources. Our modification stops
after a defined offset to start pushing.

10 20 30 40 50 60 70 80 90
HTML Document Size [KB]

200

300

400

Sp
ee
dI
nd

ex
[m

s] no push push interleaving

(b) SpeedIndex (test website) for different strategies. Our
interleaving strategy yields a stable time (average and std. dev.).

Figure 5: Interleaving Push concept and performance example.
some websites, our custom strategy performs equally to push all
by pushing fewer resources. Still, even by manual inspection of
the page load process, we are unable to optimize the SpeedIndex
significantly for many websites. We thus conclude that the optimal
push strategy is highly website-specific and requires manual effort,
an in-depth understanding of the page load and render process, as
well as the interplay of resources.

5 INTERLEAVING PUSH
We saw that the benefits of push depend on the size of the base
document and the position of resource references, e.g., pushing
objects referenced late in large base documents can be beneficial
while pushing early referenced objects may not. We also observed
that the order of pushes is performance critical [10] (cf. Sec. 4.2).
Thus, our goal is to analyze if interleaving the base document with
pushed objects can be beneficial. The intuition is to push the right
resources at the right time.
Motivating Example. We create a website that references CSS in
the <head> section and vary the size of the <body> by adding text.
As baseline, the i) browser requests the CSS (no push). Next, we
ii) push the CSS upon request for the HTML. Last, we iii) interleave
the delivery of HTML such that after a fixed offset, the server makes
a hard switch to push the CSS, before proceeding with the HTML.
Thereby, we incorporate page-specific knowledge into the strategy.

For the latter, we modify h2o’s stream scheduler. Per default, a
push is treated as child of the parent stream, e.g., a CSS as child
of the index.html. Thus, the server pushes if the parent stream
blocks, e.g., due to extra fetches if not present at the server, or is
finished. Our modification stops the parent stream after a defined
offset, e.g., after </head> and first bytes of <body>, and starts to
push (cf. Fig. 5(a)). In the no push case, Chromium assigns a lower
priority to CSS than for the HTML. The h2o server adheres to this
and sends the CSS after the HTML. Here, no push and push perform
similar (cf. Fig. 5(b)), as the parent does not block. Interleaving via
push yields nearly constant and faster performance.
Real-World Websites. Motivated by this potential, we now focus
on the applicability on real websites. Our set w1-w20 (cf. Tab. 1)
covers a broad range of content and website structures, e.g., w5
consists of 8 requests served by one server, while w17 consists of
369 requests to 81 servers. Given this complexity and our prior anal-
ysis of browser internals, we perform measurements with distinct

w1 wikipedia* w6 chase w11 aliexpress w16 twitter†
w2 apple w7 reddit w12 ebay w17 cnn
w3 yahoo w8 bestbuy w13 yelp w18 wellsfargo
w4 amazon w9 paypal w14 youtube w19 bankofamerica
w5 craigslist w10 walmart w15 microsoft w20 nytimes
Table 1: Websites (.com) selected for interleaving push. If not
marked, we capture the landing page. (*Article, †Profile.)
modifications. We unify domains of the same infrastructure, e.g.,
img.bbystatic.com and bestbuy.com, and, based on inspection
of the rendering process, host critical above-the-fold resources.
Strategies. As the baseline, we i) use a no push strategy. We extend
this to ii) a no push optimized strategy, where we use penthouse [4]
to compute a critical CSS from the included CSS, that is required to
display above-the-fold content, inspired by [10, 14]. We reference
this critical CSS in the <head> section and all other CSS at the end
of the <body>. In the iii) push all strategy, we push all resources
hosted on the previously merged domains, which might include
additional non-critical resources. We extend this setting to the
iv) push all optimized strategy. Here, we first push the critical CSS
and critical above-the-fold resources in an interleaved fashion, and
after the HTML, all other pushable resources. In the v) push critical
strategy, we push only critical resources for above-the-fold content.
Last, vi) the push critical optimized strategy adds the critical CSS
modification to the prior strategy. For all optimized strategies, we
use the modified server and the default in all other cases.
Evaluation. Using the push critical optimized strategy, we see
benefits for five websites (cf. Fig. 6(a)), but impairments or no ad-
vance (< 10 %) for all others. Next, we focus on a representative set
(cf. Fig. 6(b)), discuss influence factors, and summarize2. Reported
changes are averages and sizes are obtained on the protocol level.

The SpeedIndex of w1 is reduced by 44.95 % using only a critical
CSS (no push optimized). With the push all optimized strategy, we
see an improvement of 59.19 %, and even 68.85 % for push critical
optimized. In the latter, we push 78.43 KB compared to 1,123 KB,
saving 93 %. Here, interleaving push is beneficial, because of a large
HTML size (236 KB compressed). In the no push case, the browser
prioritizes the HTML over the CSS, and thus the server first sends
the entire HTML. In our case, we push critical CSS after 4 KB of
HTML, enabling to construct the DOM faster, and also push a
blocking JS and two images, before continuing with the HTML.

w2 already shows an improvement of 19.22 % when using a criti-
cal CSS in comparison to the no push strategy. In combination with
the push all and push critical strategy, this yields the best perfor-
mance, i.e., improvements of 33.05 % and 38.7 %. Our push critical
optimized strategy achieves a competitive improvement of 29.74 %,
only pushing 289.63 KB instead of 725.57 KB compared to the push
all optimized strategy, saving ∼ 60 %. In the default case, several CSS
requested after the HTML block the execution of JS and thus the
DOM construction. With interleaving push, we extract the critical
CSS and thus reduce the critical render path.

For w16, creating a critical CSS is not beneficial, as the website
already uses such optimizations. Still, using our push critical opti-
mized strategy improves performance by 19.67 %, pushing 10.2 KB
of resources. w16 has a similar setting as w1, i.e., CSS is made de-
pendent on the HTML (45 KB compressed). With interleaving push,

2More results available at https://push.netray.io

https://push.netray.io


CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Zimmermann et al.

(a) Websites with improvements (≥ 20 %) for our push critical
optimized strategy over the no push case.

(b) Exemplary websites with detrimental effects or no benefits
(< 10 %) for push critical optimized vs. no push.

Figure 6: Performance of strategies (websites as in Tab. 1). We show avg. relative changes (∆ < 0 is better) and 99.5 % confidence.

the server starts pushing CSS after 12 KB of HTML, allowing to
proceed with the construction of the DOM faster.

However, other websites exhibit no major improvements or even
detrimental effects. Though we are able to remove 87KB from
the critical render path of website w7 by pushing the critical CSS
instead of all CSS, the overall visual progress is not affected as much,
because w7 contains a large blocking JS in the <head>. Similar
effects are observed for w8.

w9 benefits from pushing all resources. Still, a critical CSS does
not yield drastic improvements, as the HTML contains no blocking
code until the end, i.e., no delay of processing.

For w10, we see detrimental effects by pushing all resources, as
the page contains a lot of images, which causes bandwidth con-
tention with other push streams. Pushing only critical resources
reduces detrimental effects, but does not improve over no push. We
find that a large portion of JS is inlined into the HTML. Therefore,
interleaving push is not as efficient.

w17 benefits from a critical CSS in the no push optimized case,
improving by 14.88 %, but using push does not yield improvements
> 8%. By manual inspection, we see that pushing improves the
time of the first visual change, but not the SpeedIndex, which we
attribute to the structural complexity and amount of requests.
Summary. We evaluated a novel way to utilize Server Push. By
interleaving the HTML with critical CSS and critical above-the-fold
resources on the H2 frame level, we can improve some websites
in our testbed. Still, we also see that the benefits highly depend
on the underlying website’s structure and have to be evaluated
individually. This requires a deep understanding of the page load
and rendering process in the browser. Most promising examples
include websites where we find critical blocking resources, i.e.,
CSS or JS affecting the DOM construction, referenced early. We
also observe that switching to pushing critical resources while the
browser processes inlined JS can also be beneficial, similar to [32].

Still, many websites do not benefit from our optimizations in our
testbed, based on various reasons. Some websites already employ
optimizations such as inlining critical JS or CSS, such that a browser
is not blocked after receiving the first bytes of HTML, limiting the
effect of interleaving push. Also, we see that if a website contains
a lot of third-party resources, e.g., w17, the effects of interleaving
push dilute due to the complexity of the entire page load process.

6 DISCUSSION
We observed that the optimal push strategy is highly website spe-
cific and requires in-depth analysis of the page load process. In the
following, based on our findings in Sec. 5, we discuss how a CDN

could employ our testbed and interleaving push approach as one
possibility to generate strategies automatically.
Use in CDNDeployments. Some CDNs already employ Real User
Measurements (RUM) to obtain browser feedback, i.e., embedded
JavaScripts report the data obtained in the client’s browser (e.g.,
resource timings or rendering events) back to the CDN for fur-
ther analytics [26]. Based on information about critical resources
and rendering, several (interleaving) push strategies for different
versions of a website and network settings, e.g., mobile, desktop,
cable or cellular, could be analyzed in our testbed. Subsequently,
the performance of these strategies could be assessed in A/B tests
in a real deployment against the original version [19, 21, 23, 26].
By incorporating this feedback, we believe it could be possible to
learn website and browser-specific push strategies from browser
interactions with CDN edge nodes. However, testing the feasibility
of this approach is beyond the scope of this paper.

7 CONCLUSION
This paper investigates if the current Web is ready for Server Push.
To systematically answer this question, we create an H2 testbed
based on Mahimahi, which we open sourced [9], to replay any
website in a controlled manner and subject to any Server Push
strategy. We thoroughly study the influence of various Server Push
strategies, i.e., automatically generated or based on guidelines, on
two major performance metrics, i.e., PLT and SpeedIndex, for both
a set of real-world and synthetic websites. Our results indicate that
a recommended strategy to push all embedded objects can optimize
the performance of some sites, but also decrease the performance
for others. By further varying the amount, order, and type of pushed
objects, we again observe benefits and detrimental effects as well,
highlighting the fundamental challenge of optimal Server Push
usage. By tailoring custom strategies and using a novel resource
scheduler, we show that the performance of some popular sites can
indeed be improved, with minor modifications to the deployment.

We find that, while the Web may be technically ready to support
Server Push, it is no feature that can be utilized easily. If and how
Server Push should be used is subject to a number ofwebsite-specific
aspects. Non-site specific adoption can very easily lower the web
performance. Thus, no general guidelines can be provided for opti-
mal push usage, making the feature not straightforward to apply.
The question here is not if the Web is ready for Server Push but if
the web engineers are eager to manual tuning.



Is the Web ready for HTTP/2 Server Push? CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

ACKNOWLEDGEMENTS
We thank our shepherd Ramesh Sitaraman and the anonymous
reviewers for their insightful comments and suggestions. This work
has been funded by the DFG as part of the CRC 1053 MAKI.

REFERENCES
[1] browsertime. https://github.com/sitespeedio/browsertime. Online 06/18/2017.
[2] h2o. https://h2o.examp1e.net. Online 06/18/2017.
[3] mitmproxy. https://mitmproxy.org/. Online 06/18/2017.
[4] penthouse. https://github.com/pocketjoso/penthouse. Online 06/18/2017.
[5] SpeedIndex.

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/
speed-index. Online 06/18/2017.

[6] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve Uhlig, and
Walter Willinger. 2012. Anatomy of a Large European IXP. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’12). ACM, New York, NY,
USA, 163–174.

[7] Jake Archibald. HTTP/2 push is tougher than I thought. https://jakearchibald.
com/2017/h2-push-tougher-than-i-thought/. Online 06/18/2017.

[8] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540. RFC Editor. http://www.rfc-editor.org/rfc/rfc7540.txt

[9] Benedikt Wolters and Torsten Zimmermann. 2018. Testbed Source and Measure-
ment Results. https://github.com/COMSYS/http2-conext-push.

[10] Tom Bergan, Simon Pelchat, and Michael Buettner. Rules of
Thumb for HTTP/2 Push. https://docs.google.com/document/d/
1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0. Online 06/18/2017.

[11] Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi. 2017. The Web, the
Users, and the MOS: Influence of HTTP/2 on User Experience. Springer International
Publishing, Cham, 47–59.

[12] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho. 2009. Seven Years and
One Day: Sketching the Evolution of Internet Traffic. In IEEE INFOCOM 2009.
711–719.

[13] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding
Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (IMC
’11). ACM, New York, NY, USA, 313–328.

[14] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). USENIX Association, Oakland, CA, 439–453.

[15] H. de Saxcé, I. Oprescu, and Y. Chen. 2015. Is HTTP/2 really faster thanHTTP/1.1?.
In 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 293–299.

[16] Utkarsh Goel, Moritz Steiner, Mike P. Wittie, Martin Flack, and Stephen Ludin.
2017. Measuring What is Not Ours: A Tale of 3rd Party Performance. In Passive
and Active Measurement, Mohamed Ali Kaafar, Steve Uhlig, and Johanna Amann
(Eds.). Springer International Publishing, Cham, 142–155.

[17] Ilya Grigorik. 2013. High Performance Browser Networking. O’Reilly.
[18] Ilya Grigorik and Y. Weiss. Preload. https://www.w3.org/TR/preload/.

Online 06/18/2017.
[19] Remy Guercio. Test New Features and Iterate Quickly with Cloudflare Workers.

https://blog.cloudflare.com/iterate-quickly-with-cloudflare-workers/. Online
10/03/2018.

[20] Bo Han, Shuai Hao, and Feng Qian. 2015. MetaPush: Cellular-Friendly Server
Push For HTTP/2. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges (AllThingsCellular ’15). ACM, New York,
NY, USA, 57–62.

[21] Chris Jackel. A/B testing at the edge. https://www.fastly.com/blog/ab-testing-
edge. Online 10/03/2018.

[22] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R. Das. 2017. Im-
proving User Perceived Page Load Times Using Gaze. In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 545–559.

[23] Brad Lassey. Chrome’s view on Push. https://github.com/httpwg/wg-materials/
blob/gh-pages/ietf102/chrome_push.pdf. Online 10/02/2018.

[24] Gregor Maier, Anja Feldmann, Vern Paxson, and Mark Allman. 2009. On Dom-
inant Characteristics of Residential Broadband Internet Traffic. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement (IMC ’09). ACM,
New York, NY, USA, 90–102.

[25] Patrick Meenan. 2013. How Fast is Your Website? Commun. ACM 56, 4 (April
2013), 49–55.

[26] Aman Nanner. H2 Server Push Performance. https://github.com/httpwg/wg-
materials/blob/gh-pages/ietf102/akamai-server-push.pdf. Online 10/02/2018.

[27] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In 2015 USENIX Annual Technical Conference (USENIX ATC 15).
USENIX Association, Santa Clara, CA, 417–429.

[28] Mark Nottingham. httpwg: Issue #579. https://github.com/httpwg/http-
extensions/issues/579. Online 06/18/2017.

[29] Kazuho Oku and Mark Nottingham. 2017. Cache Digests for HTTP/2. Internet-
Draft draft-ietf-httpbis-cache-digest-02. IETF Secretariat. http://www.ietf.org/
internet-drafts/draft-ietf-httpbis-cache-digest-02.txt

[30] R. Peon and H. Ruellan. 2015. HPACK: Header Compression for HTTP/2. RFC 7541.
RFC Editor. http://www.rfc-editor.org/rfc/rfc7541.txt

[31] Sanae Rosen, Bo Han, Shuai Hao, Z. Morley Mao, and Feng Qian. 2017. Push or
Request: An Investigation of HTTP/2 Server Push for Improving Mobile Perfor-
mance. In Proceedings of the 26th International Conference on World Wide Web
(WWW ’17). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 459–468.

[32] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-
hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 390–
403.

[33] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. 2018. A First Look
at QUIC in the Wild. In Passive and Active Measurement, Robert Beverly, Georgios
Smaragdakis, and Anja Feldmann (Eds.). Springer International Publishing, Cham,
255–268.

[34] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way to
the Top: Significance, Structure, and Stability of Internet Top Lists. In Proceedings
of the 2018 Internet Measurement Conference (IMC ’18). ACM, New York, NY, USA.

[35] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn, Alessandro
Finamore, and Konstantina Papagiannaki. 2016. Is the Web HTTP/2 Yet?. In
International Conference on Passive and Active Network Measurement. Springer,
218–232.

[36] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13). USENIX, Lombard, IL, 473–485.

[37] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’14). USENIX
Association, Berkeley, CA, USA, 387–399.

[38] Kyriakos Zarifis, Mark Holland, Manish Jain, Ethan Katz-Bassett, and Ramesh
Govindan. 2017. Making Effective Use of HTTP/2 Server Push in Content Delivery
Networks. Technical Report. University of Southern California.

[39] Torsten Zimmermann, Jan Rüth, Benedikt Wolters, and Oliver Hohlfeld. 2017.
How HTTP/2 Pushes the Web: An Empirical Study of HTTP/2 Server Push. In
2017 IFIP Networking Conference (IFIP Networking) and Workshops.

[40] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. 2017. A QoE
Perspective on HTTP/2 Server Push. In Proceedings of the Workshop on QoE-based
Analysis and Management of Data Communication Networks (Internet QoE ’17).
ACM, New York, NY, USA, 1–6.

https://github.com/sitespeedio/browsertime
https://h2o.examp1e.net
https://mitmproxy.org/
https://github.com/pocketjoso/penthouse
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
http://www.rfc-editor.org/rfc/rfc7540.txt
https://github.com/COMSYS/http2-conext-push
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://www.w3.org/TR/preload/
https://blog.cloudflare.com/iterate-quickly-with-cloudflare-workers/
https://www.fastly.com/blog/ab-testing-edge
https://www.fastly.com/blog/ab-testing-edge
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/chrome_push.pdf
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/chrome_push.pdf
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/akamai-server-push.pdf
https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/akamai-server-push.pdf
https://github.com/httpwg/http-extensions/issues/579
https://github.com/httpwg/http-extensions/issues/579
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-digest-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-digest-02.txt
http://www.rfc-editor.org/rfc/rfc7541.txt

	Abstract
	1 Introduction
	2 Background
	2.1 H2 Overview
	2.2 Website Performance Metrics

	3 Related Work
	4 Replaying Push Websites
	4.1 Controlled Push Strategy Evaluation
	4.2 Real-World: Altering What to Push
	4.3 Synthetic Sites and Custom Strategies

	5 Interleaving Push
	6 Discussion
	7 Conclusion
	References

